摘要
在分析电动汽车非线性因素的基础上,建立八自由度非线性模型.在正弦路面激励下,得到系统动力学响应,计算分岔图、庞加莱(Poincaré)截面和最大李雅普诺夫(Lyapunov)指数.分析结果表明该系统存在混沌运动,并发现了系统通过周期、拟周期进入混沌运动的演化过程.计算分岔图特殊点处的悬架动挠度,发现利用悬架动挠度的变化,能较好地反映系统的动态行为发生的变迁.
Based on the description of nonlinear factors,the eight degrees of freedom of EV was built.Under the sin usoidal road excitation,the responses to the model was obtained,then,the bifurcation diagram,the Poincarésection and the largest Lyapunov exponent were studied.The results indicate that the chaos exists in the system.The evolution through periodic,quasi-periodic into the chaotic motions are discovered.Suspension deflections of the special point in the bifurcation diagram were studied.It is found that it could reflect the dynamic behavior of system using the changes of suspension deflections.
出处
《同济大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2015年第3期442-447,共6页
Journal of Tongji University:Natural Science
基金
教育部高等学校博士学科点专项科研基金(20120072110013)
国家自然科学基金(51105277)
国家"九七三"重点基础研究发展计划(2011CB711200)
关键词
汽车
混沌
分岔
庞加莱截面
vehicle
chaos
bifurcation
Poincarésection