期刊文献+

水资源空间优化配置的群智能算法改进与仿真 被引量:2

Improvement and Simulation of Swarm Intelligence Algorithm for Spatial Optimal Allocation for Water Resources
原文传递
导出
摘要 本文尝试用群智能算法中的Pareto蚁群算法(PACA)求解复杂的水资源空间优化配置问题。首先,建立了以社会、经济和生态综合效益最大的目标函数,以水质、需水和供水为约束条件的水资源空间优化配置模型,并采用局部信息素强度限制,全局信息素动态更新等策略,对PACA进行改进,使蚂蚁向信息素浓度大的优化边界移动,以提高PACA的全局搜索能力和收敛速度。本文以河南省镇平县为仿真对象,借助RS和GIS,利用改进的PACA求解水资源空间优化配置模型,得到地表水、地下水、外调水的最优配置方案和最佳经济、社会、生态效益方案。通过对PACA性能指标的分析,以及对PACA改进前后解的寻优对比,表明了PACA经过改进后能有效地求解多目标、大规模的水资源空间优化配置模型,提高了寻优性能、收敛速度和全局搜索能力。 In order to solve spatial optimal allocation problem of water resource with multi-objective functions and multi-constrained conditions, Pareto ant colony algorithm (PACA) is used in this study. The model for spatial optimal allocation of water resources is established. Its objective function is the largest benefits from economy, society and environment. And its constraints include water supply, water demand and water quality. PACA is improved according to such strategies as limiting local pheromone scope and dynamically updating global pheromone. Then, GIS software is developed with the help of VB. NET 2008, ArcGIS Engine and Access. Zhenping County, Henan Province, China is selected as a study area. Data about water resources in the study area are handled using RS and GIS technology. The model is solved with PACA in the GIS environment. Spatial optimal allocation schemes of water resources, including surface water, groundwater and transfer water, are obtained. And spatial optimal benefit schemes of water resources, including economic, social and ecological benefits are also obtained. The optimal results obtained from PACA are compared with other intelligent optimization algorithms. Robustness performance, optimal performance and time performance of the improved PACA are 5.38, 0.398 and 21.6, respectively. The three performances of the ACA, however, are 8.16, 2.108 and 36.8, respectively. The results indicate that the integration of RS, GIS and PACA can effectively improve the performance of large-scale, multi-objective optimization model of water resources. This method can enhance the global search capability, the convergence speed and the result' s precision.
出处 《地球信息科学学报》 CSCD 北大核心 2015年第4期431-437,共7页 Journal of Geo-information Science
基金 宁夏自然科学基金重点项目(NZ14002)
关键词 优化配置 水资源 遥感 地理信息系统 Pareto蚁群算法 optimal allocation water resources RS GIS Pareto Ant Colony Algorithm (PACA)
  • 相关文献

参考文献31

  • 1Wardlaw R, Sharif M. Evaluation of genetic algorithms for optimal reservoir systemoperation[J]. J Water Resour Plan Manage, 1999,125(1):25-33. 被引量:1
  • 2王鹏.基于pareto front的多目标遗传算法在灌区水资源配置中的应用[J].节水灌溉,2005(6):29-32. 被引量:4
  • 3Labadie J W. Optimal operation of multireservoir sys- tems: State of- the- art review [J]. J Water Resour Plan Manage, 2004,130(2):93-111. 被引量:1
  • 4Haddad O B, Marino M A. Dynamic penalty function as a strategy in solving water resources combinatorial optimi- zation problems with Honey-bee Mating Optimization (HBMO) Algorithm[J]. Journal of Hydroinformatics, 2007,9(3):233-250. 被引量:1
  • 5Haddad O B, Afshar B, Marino M A. Honey-bees Mating Optimization (HBMO) Algorithm: A new heuristic ap- proach for water resources optimization[J]. Water Re- sources Management, 2006,20(5):661-680. 被引量:1
  • 6Jalali M R, Afshar A, Marino M A. Multi-colony ant algo- rithm for continuous multi- reservoir operation optimization problem[J]. Water Resour Manage, 2007,21:1429-1447. 被引量:1
  • 7Kumar D N, Reddy M J. Ant colony optimization for multi-purpose reservoir operation[J]. Water Resour Man age, 2006,20:879-898. 被引量:1
  • 8Madadgar S, Afshar A. An improved continuous ant algo- rithm for optimization of water resources problems[J]. Water Resources Management, 2008, 23(10):2119-2139. 被引量:1
  • 9黄显峰,邵东国,顾文权,代涛.基于多目标混沌优化算法的水资源配置研究[J].水利学报,2008,39(2):183-188. 被引量:43
  • 10伍爱华..多目标蚁群遗传算法及其在区域水资源配置问题中的应用[D].湖南大学,2007:

二级参考文献205

共引文献389

同被引文献32

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部