期刊文献+

基于状态空间模型的神经元动态相关性研究

The Analysis of Dynamic Correlation Between Neurons Based on State-space Log-linear Model
下载PDF
导出
摘要 神经元间相关性的研究是深入理解神经元集群信息传递与编码机理的基础.首先,采用状态空间对数线性模型初步估计神经元间的动态相关性,针对输入数据特征对模型估计值置信区间的影响,提出了通过筛选数据优化置信区间来提高模型估计精度.然后,通过提取动态相关性的特征,分析神经元间相关性在不同朝向光栅刺激下的动态特性,进而研究了神经元间同步作用对视觉刺激信息的编码作用.最后,在麻醉的Long Evens(LE)大鼠初级视觉皮层上进行了实验验证.结果表明:采用剔除发放率偏小的序列的数据筛选方案能够有效地提高模型估计值的精度;神经元间的锋电位同步作用对朝向光栅刺激信息具有一定的编码作用. The research on correlation between neurons is the foundation to understand the mechanism of information transmission and coding of neuronal population. A novel method called state-space log-linear model was used to estimate the dynamic correlation between paired neurons,and data sieving methods were proposed to improve the accuracy of model results for the effects of input data characteristics on the confidence interval of the model estimated values. By extracting the characteristics of dynamic correlation curves,changing characteristics of paired neurons' correlation was analyzed and then the effect on information coding of visual stimulus from synchronization between paired neurons was studied. Experimental verification was carried out in the primary visual cortex of anesthetized rats. The results show that: the accuracy of the estimated value of the model can be improved by removing the data with small firing rates,and synchronization between paired neurons encodes the information of different grating stimuli.
出处 《郑州大学学报(工学版)》 CAS 北大核心 2015年第1期1-5,共5页 Journal of Zhengzhou University(Engineering Science)
基金 国家自然科学基金资助项目(U1304602) 河南省重点科技攻关计划资助项目(122102210102)
关键词 状态空间对数线性模型 动态相关性 信息编码 同步作用 state-space log-linear model dynamic correlation information coding synchronization
  • 相关文献

参考文献14

  • 1寿天德著..视觉信息处理的脑机制[M].合肥:中国科学技术大学出版社,2010:302.
  • 2BERENS P, ECKER A S, COTTON R J, et al. Fast and simple population code for orientation in primate VI[J]. the Journal of Neuroscience, 2012, 32(31): 10618 - 10626. 被引量:1
  • 3BRUNO B AVERBECK, DAEYEOL L. Coding and transmission of information by neural ensembles [ J ]. Trends Neurosei, 2004, 27 (4) :225 - 230. 被引量:1
  • 4PICADO-MUINO D, BORGELT C, BERGER D, et al. Finding neural assemblies with frequent item set mining[J]. Frontiers in Neuroinformatics, 2013, 7 (9) :1 - 15. 被引量:1
  • 5RATTERI~ S, HONG S, DESCHUTTER E, et al. Im- pact of neuronal properties on network coding: roles of spike initiation dynamics and robust synchrony transfer [J]. Neuron, 2013, 78(5): 758-772. 被引量:1
  • 6BHARMAURIA V, BACHATENE L, CATTAN S, et al. Synergistic activity between primary visual neurons [ J]. Neuroscience, 2014,268:255 - 264. 被引量:1
  • 7SAMONS J M, ZHOU Zhi-yi, BERNARD M R, et al. Synchronous activity in cat visual cortex encodes col- linear and cocircular contours [ J ]. Journal of Neuro- physiology, 2006, 95 ( 4 ) :2602 - 2616. 被引量:1
  • 8FERNANDO M, SMITH K A, MATTHEW A. et al. The role of correlations in direction and contrast coding in the primary visual cortex [ J ]. Neuroscience, 2007, 27(9) :2338 -2348. 被引量:1
  • 9REED J L, POUGET P, QI Hui-Xin, et al. Effects of spatiotemporal stimulus properties on spike timing cor- relations in owl monkey primary somatosensory cortex [ J]. J Neurophysiol, 2012, 108(12) :3353. 被引量:1
  • 10SHIMAZAKI H, AMARI S-I, BROWN E N, et al. State-space analysis of time-varying higher-order spike correlation for multiple neural spike train data [ J ]. PLoS Comput Biol, 2012, 8(3) :233 -239. 被引量:1

二级参考文献13

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部