期刊文献+

大数据环境下网络稳定性测试模型研究 被引量:2

Research on network stability testing model under the environment of Big data communication
下载PDF
导出
摘要 传统的计算机网络稳定性分析模型受制于大数据环境下的随机性、突发性、有限性等弊端,分析结果偏差较大。提出基于模糊层次以及主元分析的大数据环境下网络稳定性测量模型,通过构建符合大数据环境下的网络稳定性评价指标体系,采用主元分析法塑造大数据环境下网络稳定性检测模型以及性能评估模型,以用户行为为源数据模型,在用户行为大数据环境下对网络稳定性进行测量。实验以大型电子商务网络为例进行分析,测试网络鲁棒性结果显示,该方法能够较好地完成大数据环境下的网络鲁棒性测试。 Traditional model for analyzing the stability of the computer network is subject to the big data communication un?der the environment of the randomness,sudden and finiteness,so the analysis deviation is bigger. The network stability measure?ment model based on fuzzy hierarchy and principal component analysis in large data environment is put forward. By building a network stability evaluation index system conforming to the big data environment,the principal component analysis method to es?tablish network stability testing model and performance evaluation model under the environment of big data,which takes user be?havior as the source data model,measures the network stability under the condition of big data in the user behavior. By taking large?scale e?commerce network as an example for experimental analysis,the network robustness was tested. The result indicates that the method can better accomplish robustness testing of the big data communication network.
出处 《现代电子技术》 北大核心 2015年第6期1-3,共3页 Modern Electronics Technique
基金 国家自然科学基金(61175122) 广东省重点实验室开放课题基金项目(2011A060901001-14D)
关键词 大数据 网络 稳定度 主元分析 big data network stability principal component analysis
  • 相关文献

参考文献6

二级参考文献25

  • 1王升辉,裘正定.结合多重分形的网络流量非线性预测[J].通信学报,2007,28(2):45-50. 被引量:40
  • 2叶苗,王勇.基于支持向量回归学习机的网络流量预测[J].桂林工学院学报,2007,27(2):282-284. 被引量:11
  • 3Vuran M C,Akan? B,Akyildiz I F.Spatio-temporal correlation:Theory and applications for wireless sensor networks[J].Computer Networks,2004,45(3):245-259. 被引量:1
  • 4Younis O,Fahmy S.HEED:A hybrid,energy-efficient,distributed clustering approach for ad hoc sensor networks[J].Mobile Computing,IEEE Transactions on,2004,3(4):366-379. 被引量:1
  • 5Manjeshwar A,Agrawal D P.TEEN:A routing protocol for enhanced efficiency in wireless sensor networks[A].Proceedings of the 15th International Parallel & Distributed Processing Symposium[C].San Francisco:IEEE Computer Society,2001.189-195. 被引量:1
  • 6Manjeshwar A,Agrawal D P.APTEEN:A hybrid protocol for efficient routing and comprehensive information retrieval in wireless sensor networks[A].Proceedings of the 16th International Parallel and Distributed Processing Symposium[C].Fort Lauderdale :IEEE Computer Society,2002.48-55. 被引量:1
  • 7Li J,Cheng S.(ε,δ)-approximate aggregation algorithms in dynamic sensor networks[J].Parallel and Distributed Systems,IEEE Transactions on,2012,23(3):385-396. 被引量:1
  • 8Heinzelman W R,Chandrakasan A,Balakrishnan H.Energy-efficient communication protocol for wireless microsensor networks[A].Proceedings of the 33rd Annual Hawaii International Conference[C].Hawaii:System Sciences,2000.3005-3014. 被引量:1
  • 9Jiang H,Jin S,Wang C.Prediction or not? An energy-efficient framework for clustering-based data collection in wireless sensor networks[J].Parallel and Distributed Systems,IEEE Transactions on,2011,22(6):1064-1071. 被引量:1
  • 10Tong L,Xu G,Kailath T. Blind identification and equalization based on second-order statistics:a time domain approach[J].{H}IEEE Transactions on Information Theory,1994.340-349. 被引量:1

共引文献85

同被引文献19

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部