期刊文献+

采用FFT方法的抗阶数过估计信道盲辨识算法 被引量:26

Blind Channel Identification Algorithms Robust to Order Overestimation Using the FFT Method
下载PDF
导出
摘要 针对二阶统计量信道盲辨识算法在小样本观测数据条件下性能恶化且对信道阶数误差敏感的问题,本文首先提出一种改进的基于FFT变换的信道盲辨识算法(FFT-MCR),该算法充分利用MCR算法只需最小冗余度信息求解信道向量的特性,有效地降低了原算法(BI-FFT)的计算复杂度且性能相当。研究表明FFT-MCR算法在信道阶数过估计情况下额外引入的公零点具有单位圆聚集性,同时提出一种具有较强阶数鲁棒性的盲辨识算法(R-FFT-MCR),算法通过聚类的思想搜索单位圆周围的公零点并将其移除,实现准确的信道估计。理论分析与仿真实验验证了所提算法的有效性。 According to performance of the blind channel identification algorithms based on second-order statistics deteri- orates under the small received data and is sensitive to the error of channel order. This paper proposes an improved blind channel identificattion algorithm based on FFT, This algorithm is expoliting the property of the MCR algorithm requiring minimum redundancy information to obtain the channel vector, then effectively reduces the computational complexity of the original algorithm(BI-FFT) but the performance is quite. It has been found that the extra estimated channel common zeros introduced by overestimating the channel order based on FFT-MCR algorithm are gathered around the unit circle, at the same time puts forward R-FFT-MCR algorithm that is robustness to channel order overestimation, We can search the com- mon zeros around the unit circle through the idea of clustering, remove them and realize the correct channel estimation. Theoretical analysis and simulation results verify the effectiveness of the proposed algorithm.
出处 《信号处理》 CSCD 北大核心 2014年第1期65-71,共7页 Journal of Signal Processing
基金 超宽带无线通信系统研发与应用示范(2009AA011205)
关键词 信道盲辨识 单输入多输出 二阶统计量 小样本数据 blind channel identification single-input multiple-output(SIMO) second order statistics small sample data
  • 相关文献

参考文献11

  • 1Tong L,Xu G,Kailath T. Blind identification and equalization based on second-order statistics:a time domain approach[J].{H}IEEE Transactions on Information Theory,1994.340-349. 被引量:1
  • 2Xu G,Liu H,Tong L. A least squares approach to blind channel identification[J].{H}IEEE Transactions on Signal Processing,1995,(12):2982-2993. 被引量:1
  • 3Aissa-El-Bey A,Grebici M,Abed-Meraim K. Blind system identification using cross-relation methods:further results and developments[A].2003.649-652. 被引量:1
  • 4Hua Y,Wax M. Strict identifiability of multiple FIR channels driven by an unknown arbitrary sequence[J].{H}IEEE Transactions on Signal Processing,2006,(03):756-759. 被引量:1
  • 5Wang S,Manton J,Devlin J. An FFT-based method for bind identification of FIR SIMO channels[J].{H}IEEE Signal Processing Letters,2009,(07):437-440. 被引量:1
  • 6Karakutuk S,Tuncer T E. Channel matrix recursion for blind effective channel order estimation[J].{H}IEEE Transactions on Signal Processing,2011,(04):1642-1653. 被引量:1
  • 7Shi M,Yi Q M. An efficient blind SIMO channel identification algorithm via eigenvalue decomposition[J].{H}LECTURE NOTES IN CONTROL AND INFORMATION SCIENCES,2010,(01):41-47. 被引量:1
  • 8He Z S,Cichocki A. Robust channel identification using FOCUSS method[J].Advance in Neural Network Research and Application,2011,(01):471-477. 被引量:1
  • 9薛江,彭华,马金全.一种不受信道阶数估计影响的SIMO直接盲均衡算法[J].信号处理,2012,28(4):519-525. 被引量:2
  • 10Schimid D,Enzner G. Cross-relation-based blind SIMO identifiability in the presence of near-common zeros and noise[J].{H}IEEE Transactions on Signal Processing,2012,(01):60-72. 被引量:1

二级参考文献14

  • 1Tong L. , Xu G. and Kailath T. Blind identification and equalization based on second-order statistics: a time domain approach [ J ]. IEEE Transactions on Information Theory, 1994, 41(1) :308-311. 被引量:1
  • 2Gazzah H.. SOS-based blind channel equalization with quadratic complexity [ J ]. IEEE Transactions on Signal Processing, 2011, 59(2): 837-841. 被引量:1
  • 3Li X. , Fan H.. Direct Estimation of Blind zero-forcing equalizers based on second-oder Statistics [ J ]. IEEE Transactions on Signal Processing, 2000, 48 ( 8 ) : 2211-2218. 被引量:1
  • 4Seung Kyung, Cho Juphil, and KiBaik Heung. Blind adaptive channel equalization using muhichannel linear prediction-based cross-correlation[J]. IEEE Transactions on Consumer Electronics, 2004, 50(4) :1026-1032. 被引量:1
  • 5Liu S. 1. , Zhu F. , Hu J. h.. Research on blind equalization algorithm of modified RLS based on canonical correlation analysis [ C ] // IEEE 2009 International Conference on Communications and Mobile Computing. Yunnan: 2009: 377-380. 被引量:1
  • 6Gazzab H.. Optimum blind muhichannel equalization using the linear prediction algorithm [ J ]. IEEE Transactions on Signal Processing, August 2006, 54 (08) : 32423247. 被引量:1
  • 7Kaeha I, Meraim K A and Belouehrani A. A low-cost adaptive algorithm for blind equalization without channel order estimation [ C]//ISCCSP 2008. Malta: 12-14 March 2008. 被引量:1
  • 8Chen S. , Wolfgang A. and Shi Y.. Space-time decision feedback equalization using a hainimum bit error rate design for single-input Multi-Output Channels [ J ]. lET Communications, 2007, 1 (4) : 671-678. 被引量:1
  • 9Chen F.j. , Kwong S. , Kok C.w.. Blind MMSE equalization of FIR/IIR channels using oversampling and muhicbannel linear prediction[J]. ETRI Journal, 2009, 31(2). 被引量:1
  • 10Doukopoulos X. g. Fast and stable subspace tracking [ J ]. IEEE Transactions on Signal Processing, 2008, 56(04) : 1452-1465. 被引量:1

共引文献1

同被引文献183

  • 1武思军,张锦中,张曙.阵列波束的零陷加宽算法研究[J].哈尔滨工程大学学报,2004,25(5):658-661. 被引量:44
  • 2黄晓红,苏飞,王兆华.基于单窗全相位数字滤波器和LMS准则的窗函数设计[J].传感技术学报,2007,20(6):1312-1315. 被引量:4
  • 3李振兴, 徐洪洲.基于经验模态分解的小波阈值降噪方法研究[J].科技通报,2012,2(9):125-128. 被引量:5
  • 4于海斌, 曾鹏, 王忠锋. 雷达测距技术研究[J]. 科技通报, 2011, 25(10): 102-104. 被引量:6
  • 5Alfaro V M,Vilanovab R.Robust tuning of 2Do F five-parameter PID controllers for inverse response controlled processes[J].Journal of Process Control,2013,23(4):453-462. 被引量:1
  • 6Schimid D,Enzner G.Cross-relation-based blind SIMO identifiability in the presence of near-common zeros and noise[J].IEEE Trans on Signal Processing,2012,60(1):60-72. 被引量:1
  • 7Bouarfa L,Dankelman J. Workflow mining and outlier de-tection from clinical activity logs [J]. Journal of BiomedicalInformatics,2012,45(6):1185-1190. 被引量:1
  • 8Wang J, Li M, Chen J, Pan Y.A Fast Hierarchical Cluster-ing Algorithm for Functional Modules Discovery in ProteinInteraction Networks[J]. Computational Biology and Bioin-formatics, 2011, 8(3):607-620. 被引量:1
  • 9Nepusz T, Yu H,Paccanaro A.Detecting overlapping pro-tein complexes in protein-protein interaction networks[J].Nature Methods,2012,9(5):471-475. 被引量:1
  • 10BOUARFA L,DANKELMAN J.Workflow mining and outlier detection from clinical activity logs[J].Journal of Biomedical Informatics,2012,45(6):1185-1190. 被引量:1

引证文献26

二级引证文献100

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部