摘要
为了解决某初步设计的轴流吹风机出风口流量较小的问题,本文对轴流风扇进行了优化设计,最终将风扇叶片翼型由NACA4409翼型改为AH79-100C翼型,叶片安装角由30°增大为32.5°,设计叶片后弯角为8°。基于计算流体力学理论,建立了轴流吹风机流场和轴流风扇风道流场的数值计算模型,运用Fluent软件进行流场数值仿真。基于ANSYS软件的Workbench平台,利用流固耦合仿真分析方法对优化后的轴流风扇进行结构分析,校核了新风扇的强度。数值仿真结果表明:仿真结果与企业实验测试结果相符,优化后的轴流吹风机出口流量较优化前增加了10.59%,新风扇轴功率满足企业要求,强度也满足设计要求,总体达到了优化目标。
In order to address the problem of small outlet flow rate of a preliminarily designed axial flow fan,this paper provides an optimized design,which changes the airfoil of the fan blades from NACA4409 to AH79-100 C,increases the blades' setting angle from 30 to 32. 5 degree,designs the blade back-bending angle to be 8 degree. Based on the theory of computational fluid dynamics,a numerical model to compute the air-flow field of axial flow fan is set up. Based on the ANSYS Workbench Platform,this paper makes structural analysis for the optimized axial-flow fan using fluid-structure interaction simulation method,and checks the strength of the new fan. The results show that simulation results coincide with enterprise test results,the outlet flow rate of the optimized axial flow fan increases by 10. 59%,the shaft power of the new axial-flow fan meets the enterprise requirements,the strength also meets the design requirements,and the optimization goals are achieved.
出处
《现代机械》
2015年第1期6-10,86,共6页
Modern Machinery
关键词
轴流风扇
翼型
后弯角
计算流体力学
流固耦合
axial-flow fan
airfoil
back-bending angle
computational fluid dynamics
fluid-structure interaction