摘要
为了解决某初步设计的轴流吹风机出风口流量较小的问题,本文对轴流风扇了进行优化设计,最终将风扇叶片翼型由NACA4409翼型改为AH79-100C翼型,叶片安装角由30°增大为32.5°,设计叶片后弯角为8°。基于计算流体力学理论,建立了轴流吹风机流场和轴流风扇风道流场的数值计算模型,运用Fluent软件进行流场数值仿真。基于ANSYS软件的Workbench平台,利用流固耦合仿真分析方法对优化后的轴流风扇进行结构分析,校核了新风扇的强度。数值仿真结果表明:仿真结果与企业实验测试结果相符,优化后的轴流吹风机出口流量较优化前增加了10.59%,新风扇轴功率满足企业要求,强度也满足设计要求,总体达到了优化目标。
In order to address the small outlet flowrate issue of a preliminary designed axial flow fan, this paper optimizes the axial-flow fan, changed the airfoil of fan blades from NACA4409 to AH79-100C, increased the blades setting angle from 30 to 32.5 degrees, and designed the blade back-bending angle of 8 degrees. Based on the theory of computational fluid dynamics, a numerical model to compute the air-flow field and the axial-flow fan duct is set up and Fluent software is used to numerically simulate on flow field. Based on the ANSYS Workbench Platform, structural analysis for the optimized axial-flow fan using fluid-structure interaction simulation method is made, and the strength of the new fan is checked. The simulation results show that simulation results coincide with enterprise test results, the outlet flowrate of the optimized axial flow fan increased 10.59%, the shaft power of new axial-flow fan meets enterprise requirements, the strength also meets the design requirements, and the optimization goals are achieved.
出处
《风机技术》
2015年第1期28-32,37,共6页
Chinese Journal of Turbomachinery
关键词
轴流风扇
翼型
后弯角
计算流体力学
流固耦合
优化
强度校核
axial-flow fan
airfoil
back-bending angle
computational fluid dynamics
fluid-structure interaction
optimization
strength check