期刊文献+

一种基于广义2DLDA算法在人脸识别的应用 被引量:4

A Novel Method Based on Generalized 2DLDA for Application of Face Recognition
下载PDF
导出
摘要 提出一种基于广义的2DLDA算法,简称:G2DLDA.首先,由于2DLDA算法提取的特征向量矩阵S-1wSb通常不是标准正交特征向量矩阵,因此该方法会严重影响特征提取的质量.本文根据Sw矩阵是对称正定的,即:具有Sw=S1/2w×S1/2w性质,将2DLDA算法的特征向量矩阵转化成基于标准正交特征向量矩阵,即:S-1/2wSbS-1/2w.其次,G2DLDA算法与2DLDA一样不会产生小样本事件,因为方程式S-1/2wSbS-1/2wv=λv的右端为单位矩阵,是满秩的.最后,G2DLDA算法采用基于Cosine-范数度量方式进行分类,实验证明该度量方式优于其他度量方式,如:欧氏距离度量方式以及F-范数度量方式.在实验阶段,本文采用Yale、ORL和JAFFE三个数据库对该算法进行测试与分析,实验结果证明该算法具有较好的鲁棒性,同时能够获得较高的识别率. In this paper, a novel method based on the generalized 2DLDA, G2DLDA for short, is proposed. First of all, it will affect the quality of feature extraction due to the eigenvectors Matrix S-1w Sb of 2DLDA method being usually not orthogonal. However, Sw matrix is symmetric and positive definite, namely Sw = S1/2w×S1/2w, so we can change the eigenvectors Matrix to standardized orthogonal vectors Matrix,namely S-1/2wSbS-1/2w. In the squeal,because the right side of equation S-1/2wSbS-1/2wv = λv is unit matrix which is full rank, G2DLDA as well as 2DLDA will never produce the "Small Simple Size". In last but not least,G2DLDA method using Cosine-norm metric for classification is better than other metrics such as the Euclidean distance metric and the F-norm metric through experimental analysis. In experimental phase, Yale Face Database,ORL and JAFFE Database are used by the test and analysis. Experimental results demonstrate that our method has better robustness and higher recognition rate than the state-of-art methods.
出处 《小型微型计算机系统》 CSCD 北大核心 2015年第4期856-861,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金重点项目(60736008)资助 国家自然基金青年科学基金项目(60903141)资助 北京市自然科学基金项目(4122017)资助 北京教委暨北京自然基金重点项目B类(KZ201210028036)资助
关键词 广义二维线性判别分析 二维化 Cosine-范数 小样本事件 维度灾难 generalized 2D linear discriminant analysis two dimension cosine-norm small simple size curse of dimensionality
  • 相关文献

参考文献1

二级参考文献11

  • 1Yang Jian, Zhang D, Yang Jiang-yu. Constructing PCA baseline algorithms to reevaluate ICA-based face recognition performance [ J]. IEEE Trans. on Systems, Man, and Cybernetics, 2007,37 (4) :1015-1021. 被引量:1
  • 2Liu Xiao-zhang, Chen Wcn-sheng, Yucn P C, st al. Learning ker- nel-based LDA for face recognition under illumination variations[J]. IEEE Trans. on Signal Processing Letter, 2009,16(12): 1019-1022. 被引量:1
  • 3Yang J, Zhang D, Frangi A F, et al. Two dimensional PCA: a new approach to appearance based face representation and recogni- tion [ J ]. IEEE Trans. on Pattern Analysis and Machine Inmlli- gence, 2004,26(6) :131-137. 被引量:1
  • 4Kong H, Wang L, Teoh EK Li X, et al. Generalized 2D principal component analysis for face image representation and recognition [ J]. Neural Networks,2005,18 (5-6) :585-594. 被引量:1
  • 5Kong Hui, Wang Lei, Earn Khwang Teoh, et al. A framework of 2D fisher discriminam analysis: application to face[ C]. CaliforniaUSA, In Proceedings of the IEEE Computer Society on Computer Vision and Pattern Recognition, June 2005, 2:1083-1088. 被引量:1
  • 6Zhao W. Discriminant component analysis for face recognition [C]. In Proceedings of the International Conference on Pattern Recognition, 2000. 被引量:1
  • 7Asuncion M Vicente, Patrik O Hoycr, Aapo Hyvarinen. Equiva- lence of some common finear feature extraction techniques for ap-pearance-based object recognition tasks[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence May, 2007, 29 ( 5 ) : 896- 900. 被引量:1
  • 8Song Jia-dong, I.,i Xiao-juan, Xu Peng-fei, et al. Global face recognition framework based on symmetrical 2DPLS by two sides plusLDA[ C]. In Prongs of Lhe Second International Workshop on Education Technology and Computer Science, March, Wnhan, 2010,2:60-64. 被引量:1
  • 9Bruce A Draper, Kyungim Baek, Marian stewart bartlett, et al. Recognizing faces with PCA and ICA [ J ]. Computer Vision and Image Understanding, 2003, 99 : 115 -137. 被引量:1
  • 10Yang Wan-kou, Wang liao-guo, Ren Ming-wu, et al. Fuzzy 2-di- mensional FLD for face recognition [ J ]. Journal of Information and Computing Science, 2009, 4 (3) : 233-239. 被引量:1

共引文献6

同被引文献29

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部