期刊文献+

支持向量机在齿轮故障诊断中的应用 被引量:1

Application of SVM to Gear Fault Diagnosis
下载PDF
导出
摘要 针对齿轮故障诊断中的小样本事件,采用了支持向量机(SVM)方法.采集齿轮3种典型故障(断齿、磨损、剥落)和正常状态的振动信号,提取时域指标和能量特征作为SVM输入向量,并采用交叉验证(K-CV)法优化SVM参数,最终得到的故障诊断准确率为100%.结果表明SVM是一种有效的齿轮故障诊断方法. In this paper,the support vector machine(SVM) classification algorithm has been applied to gear fault diagnosis in small samples based on vibration signals covering four working conditions,i.e.normal,broken teeth,wear and spalling.Firstly,time domain index and energy of the signals were extracted as input of SVM.Then,parameters of SVM were optimized using K-fold cross validation(K-CV) method.Finally,applied the SVM to the fault diagnosis,and the faults were recognized correctly with an accuracy of 100%.The results demonstrate that SVM is an effective method for gear fault diagnosis.
出处 《三峡大学学报(自然科学版)》 CAS 2012年第2期63-65,75,共4页 Journal of China Three Gorges University:Natural Sciences
关键词 支持向量机 交叉验证(K-CV) 故障诊断 support vector machine(SVM) K-fold cross validation(K-CV) fault diagnosis
  • 相关文献

参考文献8

二级参考文献17

共引文献199

同被引文献11

  • 1邓爱民,陈循,张春华,汪亚顺.基于性能退化数据的可靠性评估[J].宇航学报,2006,27(3):546-552. 被引量:133
  • 2金标,秦大同,胡建军.基于小子样的Bayes系统可靠性综合评估方法[J].重庆大学学报(自然科学版),2007,30(9):9-13. 被引量:8
  • 3Leite S A M, Chaves R L, Fonseca M L A, et al. Composite reliability assessment based on Monte Carlo simulation and artificial neural networks [ J]. IEEE Transactions on Power Systems ,2007,22 (3) : 1202 - 1209. 被引量:1
  • 4Oscano R, Lyonnet P. On-line reliability prediction via dy- namic failure rate model [ J ]. IEEE Transactions on Reliabil- ity,2008,57 ( 3 ) :452 - 457. 被引量:1
  • 5Zio E. Reliability engineering:Old problems and new chal- lenges[ J]. Reliability Engineering and System Safety,2009, 94(2) :125 - 141. 被引量:1
  • 6Chen Baojia, Chen Xuefeng, Li Bing, et al. Reliability esti- mation for cutting tools based on logistic regression model u- sing vibration signals [ J ]. Mechanical Systems and Signal Processing,2011,25 (7) :2526 - 2537. 被引量:1
  • 7Heng A S Y. Intelligent prognostics of machinery healthuti- lizing suspended condition monitoring data [ D . Brisbane: Queensland University of Technology, 2009. 被引量:1
  • 8Kaplan E L, Meier P. Nonparametric estimation from incom- plete observations [ J ]. Journal of the American Statistical Association, 1958 (53) :457 - 481. 被引量:1
  • 9苗学问.航空发动机主轴承使用寿命预测技术研究[D].北京:北京航空航天大学,2009. 被引量:1
  • 10朱大林,唐瑞,詹腾,丁昌鹏.随机激励下四自由度机床隔振系统的主动控制研究[J].三峡大学学报(自然科学版),2013,35(2):77-80. 被引量:2

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部