期刊文献+

基于R-SVM与SVDD的部位外观模型 被引量:3

Part appearance model based on R-SVM and SVDD
下载PDF
导出
摘要 为克服现有基于HOG特征的部位外观模型未考虑不同细胞单元的不同作用以及不能准确表征相似度的缺陷,提出了一种基于递归支持向量机(R-SVM)和支持向量数据描述(SVDD)算法的人体部位外观模型。所提外观模型由两个分类器构成,利用R-SVM进行特征选择并建立的分类器用于判断图像某区域是否属于人体部位类,利用SVDD建立的相似度分类器用于计算属于人体部位类的图像区域与外观模型的相似度。将所提部位外观模型用于人体上半身姿态的估计,仿真实验结果显示其比现有部位外观模型的估计准确度更高,表明所提部位外观模型可以更准确地描述真实人体部位。 For overcoming the defect that the existing part appearance models did not consider the different roles of different cells and could not represent the similarity accurately,this paper proposed an appearance model based on the recursive support vector machine( R-SVM) and support vector data description( SVDD) algorithm. The proposed appearance model consisted of two classifiers,the classifier built after feature selection by using R-SVM determined whether an image region belonged to the class of human part,the similarity classifier built by using SVDD calculated the similarity of an image region with the proposed appearance model. When used the proposed appearance model to human pose estimation,experiment results show that it can get higher estimation accuracy than the existing part appearance models,that indicate the proposed appearance models can represent real human part more accurately.
作者 韩贵金 朱虹
出处 《计算机应用研究》 CSCD 北大核心 2015年第4期1272-1275,共4页 Application Research of Computers
基金 国际合作项目子项项目(2011DRF10480) 陕西省教育厅自然科学基金资助项目(2013JK0993)
关键词 人体姿态估计 部位外观模型 递归支持向量机 支持向量数据描述 梯度方向直方图 human pose estimation part appearance model recursive support vector machine support vector data descrip-tion histogram of oriented gradient
  • 相关文献

参考文献18

  • 1FISCHLER M,ELSCHLAGER R. The representation and tnatclfing of pictorial structures[ J]. IEEE Trans on Computers, 1973,22 ( 1 ) : 67-92. 被引量:1
  • 2FEIZENSZWALB P,HUTTENLOCHER D. Pictorial stnwtures for ob- ject recognition [ J ]. International Journal of Computer Vision, 2005,61 ( 1 ) :55-79. 被引量:1
  • 3THOMAS B M,HILTON A,KRUGER V,et al. Visual analysis of ha- manse[ M ]. Berlin : Springer,2011. 被引量:1
  • 4DALAL N,TRIGGS B. Histograms of oriented gradients tor lmman de- tection[ C ]//Proc of IEEE Conference on Computer Vision and Pat- tern Recognition. Piscataway : 1EEE Press,2005 : 886- 893. 被引量:1
  • 5SRINIVASAN P,SHI J. Bottom-up recognition and parsing of the hu- man body[ C ]//Proc of IEEE Conlerence on Computer Visioo and Pattern Recognition. Piscataway : IEEE Press,2007 : 1 -8. 被引量:1
  • 6JOHNSON S,EVERINGHAM M. Combining diserinfinative appearance and segmentation cues tot articulated human pose estimation [ C ]//Proc of the 12th Internation: Conference on Computer Vision. Piseataway: IEEE Press,2009:405-412. 被引量:1
  • 7SAPP B,TOSHEV A, TASKAR B. Cascaded models for articulated pose estimation[ C ]//Proc of the 11 th European Conference on Com- puter Vision. Berlin :Springer ,2010:406- 420. 被引量:1
  • 8WANG Fang,LI Yi. Beyond physical connections:tree models in hu- man pose estimation[ C ]//Proc of IEEE Conterence on Computer Vi- sion and Pattern Recognition. Piscataway: IEEE Press, 2013: 596- 603. 被引量:1
  • 9YANG Yi, RAMANAN D. Articulated hmnan detection with flexible mixtures of parts [ J]. IEEE Trans on Pattern Analysis and Ma- chine Intelligence,2013,35( 12 ) :2878-2890. 被引量:1
  • 10FERRARI V, MARIN-JIMENEZ M, ZISSERMAN A. Progressive search space reduction for human pose estimation[ C ]//Proc of IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press,2008 : 1 - 8. 被引量:1

二级参考文献28

  • 1赵英刚,陈奇,何钦铭.一种基于支持向量机的直推式学习算法[J].江南大学学报(自然科学版),2006,5(4):441-444. 被引量:8
  • 2廖东平,姜斌,魏玺章,黎湘,庄钊文.一种快速的渐进直推式支持向量机分类学习算法[J].系统工程与电子技术,2007,29(1):87-91. 被引量:12
  • 3沈新宇,许宏丽,官腾飞.基于直推式支持向量机的图像分类算法[J].计算机应用,2007,27(6):1463-1464. 被引量:10
  • 4Vapnik V N. Statistical Learning Theory. New York, USA : Wiley, 1998 被引量:1
  • 5Bennett K, Demiriz A. Semi-Supervised Support Vector Machines //Kearns M S, Solla S A, Cohn D A, eds. Advances in Neural Information Processing Systems. Cambridge, USA : MIT Press, 1999, 11 : 368 - 374 被引量:1
  • 6Chapelle O, Vapnik V, Weston J. Transductive Inference for Estimating Values of Functions// Kearns M S, Solla S A, Cohn D A, eds. Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 1999, 11:421-427 被引量:1
  • 7Joachims T. Transductive Inference for Text Classification Using Support Vector Machines// Proc of the 16th International Conference on Machine Learning. Bled, Slovenia, 1999 : 200 - 209 被引量:1
  • 8Chen Yisong, Wang Guoping, Dong Shihai. Learning with Progressive Transductive Support Vector Machines. Pattern Recognition Letters, 2003, 24(12) : 1845 - 1855 被引量:1
  • 9Tax D M J, Duin R P W. Support Vector Domain Description . Pattern Recognition Letters, 1999, 20 ( 11 / 12/13 ) : 1191 - 1199 被引量:1
  • 10Ding Ailing, Liu Fang, Li Ying. Pre-Extracting Support Vector by Adaptive Projective Algorithm//Proc of the 6th International Conference on Signal Proceedings. Beijing, China, 2002, Ⅰ: 21 -24 被引量:1

共引文献48

同被引文献18

  • 1THOMAS B M,HILTON A,KRUGER V,et al.Visual analysis of humans[M].Berlin:Springer,2011:45-60. 被引量:1
  • 2DUNN J C.A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters[J/OL].Journal of Cybernetics,1973,3(3):32-57[2016-05-25].http://dx.doi.org/10.1080/01969727308546046. 被引量:1
  • 3MARSILI-LIBELLI S.Fuzzy Clustering of Ecological Data[J/OL].Springer Netherlands,1991,11(2):173-184[2016-05-25].http://link.springer.com/chapter/10.1007/978-94-011-3418-7_15.DOI:10.1007/978-94-011-3418-7_15. 被引量:1
  • 4EICHNER M,MARIN J M,ZISSEMAN A,et al.2Darticulated human pose estimation and retrieval in(almost)unconstrained still images[J/OL].International Journal of Computer Vision,2012,99(2):190-214[2016-05-25].http://dx.doi.org/10.1007/s11263-012-0524-9. 被引量:1
  • 5HAN G.J,ZHU H,GE J R.Effective search space reduction for human pose estimation with viterbi recurrence algorithm[J/OL].International Journal of Modeling,Identifica-tion and Control,2013,18(4):341-348[2016-06-03].http://www.ingentaconnect.com/content/ind/ijmic/2013/00000018/00000004/art00005. 被引量:1
  • 6ANDRILUKA M,ROTH S,SCHIELE B.Pictorial structures revisited:people detection and articulated pose estimation[C/OL]//Proceedings of 2009IEEE Conference on Computer Vision and Pattern Recognition,Piscataway,N.J.:IEEE Press,2009:1014-1021.http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5206754.DOI:10.1109/CVPR.2009.5206754. 被引量:1
  • 7SAPP B,TOSHEV A,TASKAR B.Cascaded models for articulated pose estimation[C/OL]//Proceedings of 11th European Conference on Computer Vision,Berlin:Springer,2010,6312:406-420[2016-05-25].http://dx.doi.org/10.1007/978-3-642-15552-9_30. 被引量:1
  • 8JOHNSON S,EVERINHAM M.Combining discriminative appearance and segmentation cues for articulated human pose estimation[C/OL]//2009IEEE 12th International Conference on Computer Vision Workshops(ICCV Workshops),Piscataway,N.J.:IEEE Press,2009,15(7):405-412[2016-05-25].http://dx.doi.org/10.1016/j.jval.2012.08.1892. 被引量:1
  • 9SINGH V K,NEVATIA R,HUANG C.Effici-ent inference with multiple heterogeneous part detectors for human pose estimation[C/OL]//Proceedings of11th European Conference on Computer Vision,Berlin:Springer,2010:6313:314-327[2016-05-25].http://dx.doi.org/10.1007/978-3-642-15558-1_23. 被引量:1
  • 10FERRARI V,MARIN J M,ZISSERMAN A.Progressive search space reduction for human pose estimation[C/OL]//Proceedings of 2008IEEE Conference on Computer Vision and Pattern Recognition,Piscataway,N.J.:IEEE Press,2008:1-8[2016-06-03].http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4587468.DOI:10.1109/CVPR.2008.4587468. 被引量:1

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部