期刊文献+

场景自适应的跟踪特征选择机制研究 被引量:3

Research on scene adaptive tracking feature selection
原文传递
导出
摘要 视频目标跟踪是当前计算机视觉领域中的一个关键问题。基于场景分类提出了一种视频目标特征的实时在线选择方法。离线时首先采用改进型的"空间金字塔匹配"算法完成先验视频场景的分类;然后采用不同的描述算法实现对目标和背景的特征描述,通过对数形式的方差比计算出目标和背景的特征距离;最后融合均值和熵值对特征距离进行统计分析,建立场景相关的描述子显著性排序。在此基础上,在线时利用初始帧完成测试视频的场景判定,结合当前场景下的描述子排序,实时选择最优特征,应用于粒子滤波跟踪系统,在公开视频库上进行跟踪测试,验证排序的正确性和选择机制的必要性。 Video target tracking is a key issue in the field of computer vision.Based on the scene classification an online method for video target feature selection is proposed.During off-line,the modified spatial pyramid matching algorithm(NEW-SPM)is used to complete the sample-videos classification at first.And then the rough localization of target and background region is realized with TLD tracking algorithm,and the characteristics description the target and background is completed with different descriptors.After this,the feature distance between target and background is calculated through the form of log variance ratio.And finally,the fusion mean and entropy statistical analysis is carried out on the characteristics of distance for the saliency sorting of different descriptors.On this basis,the scenarios related characteristics saliency lists are constructed.Combining with the testing scenes judgment,the lists are applied to the on-line particle filter tracking system to select the best descriptor in the current category,and it is tested on the public library of tracking,the validity of the lists and the necessity of selection method are proven.
出处 《光学技术》 CAS CSCD 北大核心 2014年第6期551-559,共9页 Optical Technique
基金 光电控制技术重点实验室和航空科学基金联合资助项目(20125186005)
关键词 目标跟踪 TLD跟踪算法 显著性排序 实时特征选择 粒子滤波 跟踪精度 target tracking TLD tracking algorithm saliency list on-line feature selection particle filter tracking precision
  • 相关文献

参考文献26

  • 1Li Shan,Lee M C.Fast visual tracking using motion saliency in video[C]∥Proceedings of the IEEE International Conference on Acoustics,Speech and Signal Processing.New York:IEEE,2007:1073-1076. 被引量:1
  • 2Wren C R,Azarbayejani A P.Real-time tracking of the human body[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):780-785. 被引量:1
  • 3Pet N.Robust tracking of position and velocity with Kalman snakes[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1999,21(6):564-569. 被引量:1
  • 4Kalal Z,Matas J,Mikolajczyk K.Online learning of robust object detectors during unstable tracking[C]∥Proceedings of the IEEE on-Line Learning for Computer Vision Workshop.New York:IEEE,2009:1417-1424. 被引量:1
  • 5Stern H,Efros B.Adaptive color space switching for face tracking in multi-colored lighting environment[C]∥Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition.New York:IEEE,2002:249-254. 被引量:1
  • 6Lazebnik S,Schmid C.Beyond bags of features:Spatial pyramid matching for recognizing natural scene categories[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.New York:IEEE,2006:2169-2178. 被引量:1
  • 7付毅,田畅,吴泽民,曾明勇,胡银记.一种快速的全局场景分类算法[J].红外与激光工程,2013,42(S01):242-248. 被引量:1
  • 8Kalal Z,Matas J,Mikolajczyk K.Weighted sampling for largescale boosting[C]∥Proceedings of British Machine Vision Conference(BMVC).Leeds,UK:University of Leeds,2008. 被引量:1
  • 9周鑫,钱秋朦,叶永强,王从庆.改进后的TLD视频目标跟踪方法[J].中国图象图形学报,2013,18(9):1115-1123. 被引量:47
  • 10Kalal Z,Matas J,Mikolajczyk K.Bootstrapping binary classifiers by structural constraints[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.New York:IEEE,2010:49-56. 被引量:1

二级参考文献51

共引文献427

同被引文献30

引证文献3

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部