期刊文献+

基于美式障碍期权定价的非线性变分不等式问题 被引量:1

The nonlinear variational inequality problem arising from American barrier option
下载PDF
导出
摘要 研究了一类基于美式障碍期权定价的非线性变分不等式问题.首先定义了变分不等式问题的弱解.其次利用惩罚方法和Schaefer不动点定理证明了该变分不等式在弱意义下的解是存在且唯一的. In this text, the nonlinear variational inequality problem which arises from the valuation of American barrier option is studied. Firstly, the weak solution of the variational inequality is defined. Secondly, the existence and uniqueness of the solutions in the weak sense are proved by using the Schaefer fixed point theory and penalty method.
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2015年第1期43-54,共12页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 国家自然科学基金(71171164) 贵州省研究生卓越人才计划(ZYRC字[2014]008)
关键词 非线性变分不等式 弱解 Schaefer不动点定理 惩罚方法 nonlinear variational inequality weak solution Schaefer fixed point theory penalty method
  • 相关文献

参考文献12

  • 1Chen Xiaoshan, Yi Fahuai. American lookback option with fixed strike price 2-D parabolic variational inequality[J]. Journal of Differential Equations, 2011, 251(1): 3063-3089. 被引量:1
  • 2Zhou Yang, Yi Fahuai. A free boundary problem arising from pricing convertible bond[J]. Applicable Analysis, 2010, 89(1): 307-323. 被引量:1
  • 3Chen Xiaoshan, Yi Fahuai. Parabolic variational inequality with parameter and gradient constraints[J]. Journal of Mathematical Analysis and Applications, 2012, 385(2): 928-946. 被引量:1
  • 4Zhou Yang, Yi Fahuai. A variational inequality arising from American installment call options pricing[J].Journal of Mathematical Analysis and Applications, 2009, 357(1): 54-68. 被引量:1
  • 5姜礼尚著..期权定价的数学模型和方法 第2版[M].北京:高等教育出版社,2008:347.
  • 6Song S, Jeong J, Song J. Asymptotic option pricing under pure-jump Levy processes via nonlinear regression[J]. Journal of the Korean Statistical Society, 2011, 40(2): 227-238. 被引量:1
  • 7Zhang B, Oosterlee B W. Pricing of early-exercise Asian options under Levy processes based on Fourier cosine expansions[J]. Applied Numerical Mathematics, 2014, 78(4): 14-30. 被引量:1
  • 8Zaevski T S, Kim Y S, Fabozzi F J. Option pricing under stochastic volatility and tempered stable Levy jumps[J]. International Review of Financial Analysis, 2014, 31 (1): 101-108. 被引量:1
  • 9Cont R, Tankov P. Financial Modelling with Jump Processes[M]. Londin: Chapman &: Hall, 2004. 被引量:1
  • 10Mariani M C, SenGupta I. Solutions to an integro-differential parabolic problem arising in the pricing of financial options in a Levy market[J]. Nonlinear Analysis: Real World Applications, 2011, 12(6): 3103-3113. 被引量:1

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部