期刊文献+

Very low threshold operation of quantum cascade lasers

Very low threshold operation of quantum cascade lasers
下载PDF
导出
摘要 A strain-compensated InP-based quantum cascade laser(QCL) structure emitting at 4.6 μm is demonstrated,based on a two-phonon resonant design and grown by solid-source molecular beam epitaxy(MBE).By optimizing the growth parameters,a very high quality heterostructure with the lowest threshold current densities ever reported for QCLs was fabricated.Threshold current densities as low as 0.47 kA/cm^2 in pulsed operation and 0.56 kA/cm^2 in continuous-wave(cw) operation at 293 K were achieved for this state-of-the-art QCL.A minimum power consumption of 3.65 W was measured for the QCL,uncooled,with a high-reflectivity(HR) coating on its rear facet. A strain-compensated InP-based quantum cascade laser(QCL) structure emitting at 4.6 μm is demonstrated,based on a two-phonon resonant design and grown by solid-source molecular beam epitaxy(MBE).By optimizing the growth parameters,a very high quality heterostructure with the lowest threshold current densities ever reported for QCLs was fabricated.Threshold current densities as low as 0.47 kA/cm^2 in pulsed operation and 0.56 kA/cm^2 in continuous-wave(cw) operation at 293 K were achieved for this state-of-the-art QCL.A minimum power consumption of 3.65 W was measured for the QCL,uncooled,with a high-reflectivity(HR) coating on its rear facet.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第2期198-201,共4页 中国物理B(英文版)
基金 supported by the National Basic Research Program of China(Grant Nos.2013CB632801 and 2013CB632803) the National Natural Science Foundation of China(Grant Nos.61306058,61274094,and 61435014) the Beijing Natural Science Foundation(Grant No.4144086)
关键词 semiconductor laser quantum cascade lasers threshold current density semiconductor laser, quantum cascade lasers, threshold current density
  • 相关文献

参考文献25

  • 1Kosterev A A and Tittel F K 2002 IEEEJ. Quantum Electron. 38582. 被引量:1
  • 2Nelson D D, ShorterJ H, McManusJ B and Zahniser M S 2002 Appl. Phys. B: Lasers Opt. 75 343 . 被引量:1
  • 3Namjou K, Cai S, Whittaker E A, FaistJ, Gmachl C, Capasso F, Sivco D L and Cho A Y 1998 Opt. Lett. 23219. 被引量:1
  • 4Liu F Q, Li L. Wang LJ, LiuJ Q. Zhang W. Zhang Q D, Liu W F. Lu Q Y and Wang Z G 2009 Appl. Phys. A 97 527. 被引量:1
  • 5Xie f. Caneau C G. LeBlanc H P, Visovsky NJ, Coleman S, Hughes L C and Zah C 2009 Appl. Phys Lett. 95 091110. 被引量:1
  • 6Lyakh A, Maulini R, Tsekoun A. Go R, Pflugl C, Diehl L. Wang QJ, Capasso F and Patel C K N 2009 Appl. Phys. Lett. 95 141113. 被引量:1
  • 7Wittmann A. Bonetti Y, Fischer M. FaistJ, Blaser S and Gini E 2009 IEEE Photon. Technol. Lett. 2112. 被引量:1
  • 8Bai Y. Slivken S. Darvish S R, Haddadi A and Gokden B 2009 Appl. Phys. Lett. 95221104. 被引量:1
  • 9Lu Q Y, Guo W H. Zhang W. Wang LJ. LiuJ Q. Li L. Liu F Q and Wang Z G 2010 Appl. Phys. Lett. 96051112. 被引量:1
  • 10Sirtori C. FaistJ. Capasso F. Sivco D L. Hutchinson A L. George Chu S N and Cho A Y 1996 Appl. Phys. Lett. 68 1745. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部