期刊文献+

High-Power and High-Efficiency Operation of Terahertz Quantum Cascade Lasers at 3.3 THz

High-Power and High-Efficiency Operation of Terahertz Quantum Cascade Lasers at 3.3 THz
下载PDF
导出
摘要 A high-power and high-effciency GaAs/A1GaAs-based terahertz (THz) quantum cascade laser structure emitting at 3.3 THz is presented. The structure is based on a hybrid bound-to-continuum transition and resonant-phonon extraction active region combined with a semi-insulating surface-plasmon waveguide. By optimizing material structure and device processing, the peak optical output power of 758mW with a threshold current density of 120 A/cm2 and a wall-plug effciency of 0.92% at 10K and 404mW at 77K are obtained in pulsed operation. The maximum operating temperature is as high as llS K. In the cw mode, a record optical output power of 160roW with a threshold current density of 178A/cm2 and a wall-plug efficiency of 1.32% is achieved at 1OK. A high-power and high-effciency GaAs/A1GaAs-based terahertz (THz) quantum cascade laser structure emitting at 3.3 THz is presented. The structure is based on a hybrid bound-to-continuum transition and resonant-phonon extraction active region combined with a semi-insulating surface-plasmon waveguide. By optimizing material structure and device processing, the peak optical output power of 758mW with a threshold current density of 120 A/cm2 and a wall-plug effciency of 0.92% at 10K and 404mW at 77K are obtained in pulsed operation. The maximum operating temperature is as high as llS K. In the cw mode, a record optical output power of 160roW with a threshold current density of 178A/cm2 and a wall-plug efficiency of 1.32% is achieved at 1OK.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第10期41-43,共3页 中国物理快报(英文版)
基金 Supported by the National Basic Research Program of China under Grant Nos 2014CB339803 and 2013CB632801 the National Natural Science Foundation of China under Grant No 61376051
  • 相关文献

参考文献14

  • 1Siegel P H 2002 IEEE Trans.Microwave Theory Tech.50 910. 被引量:1
  • 2Tonouchi M 2007 Nat.Photon.1 97. 被引量:1
  • 3Kohler R,Tredicucci A,Beltram F,Beere H E,Linfield E H,Davies A G,Ritchie D A,Iotti R C and Rossi F 2002 Nature 417 156. 被引量:1
  • 4Liu J Q,Chen J Y,Liu F Q,Li L,Wang L J and Wang Z G 2010 Chin.Phys.Lett.27 104205. 被引量:1
  • 5Liu J Q,Chen J Y,Wang T,Li Y F,Liu F Q,Li L,Wang L J and Wang Z G 2013 Solid-State Electron.81 68. 被引量:1
  • 6Wang T,Liu J Q,Chen J Y,Liu Y H,Liu F Q,Wang L J and Wang Z G 2013 Chin.Phys.Lett.30 064201. 被引量:1
  • 7Danylov A A,Goyette T M,Waldman J,Coulombe M J,Gatesman A J,Giles R H,Qian X F,Chandrayan N,Vangala S,Termkoa K,Goodhue W D and Nixon W E 2010 Opt.Express 18 16264. 被引量:1
  • 8Danylov A A,Waldman J,Goyette T M,Gatesman A J,Giles R H,Li J,Goodhue W D,Linden K J and Nixon W E 2008 Opt.Express 16 5171. 被引量:1
  • 9Danylov A A,Goyette T M,Waldman J,Coulombe M J,Gatesman A J,Giles R H,Goodhue W D,Qian X F and Nixon W E 2009 Opt.Express 17 7525. 被引量:1
  • 10Li L H,Chen L,Zhu J X,Freeman J,Dean P,Valavanis A,Davies A G and Linfield E H 2014 Electron.Lett.50 309. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部