期刊文献+

Self-adjusting entropy-stable scheme for compressible Euler equations 被引量:1

Self-adjusting entropy-stable scheme for compressible Euler equations
下载PDF
导出
摘要 In this work,a self-adjusting entropy-stable scheme is proposed for solving compressible Euler equations.The entropy-stable scheme is constructed by combining the entropy conservative flux with a suitable diffusion operator.The entropy has to be preserved in smooth solutions and be dissipated at shocks.To achieve this,a switch function,which is based on entropy variables,is employed to make the numerical diffusion term be automatically added around discontinuities.The resulting scheme is still entropy-stable.A number of numerical experiments illustrating the robustness and accuracy of the scheme are presented.From these numerical results,we observe a remarkable gain in accuracy. In this work,a self-adjusting entropy-stable scheme is proposed for solving compressible Euler equations.The entropy-stable scheme is constructed by combining the entropy conservative flux with a suitable diffusion operator.The entropy has to be preserved in smooth solutions and be dissipated at shocks.To achieve this,a switch function,which is based on entropy variables,is employed to make the numerical diffusion term be automatically added around discontinuities.The resulting scheme is still entropy-stable.A number of numerical experiments illustrating the robustness and accuracy of the scheme are presented.From these numerical results,we observe a remarkable gain in accuracy.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第2期16-22,共7页 中国物理B(英文版)
基金 supported by the National Natural Science Foundation of China(Grant Nos.11171043,11101333,and 11471261) the Doctorate Foundation of Northwestern Polytechnical University(Grant No.CX201426)
关键词 compressible Euler equations entropy-stable scheme switch function compressible Euler equations, entropy-stable scheme, switch function
  • 相关文献

参考文献46

  • 1Dafermos C M 2000 Conservation Laws in Continuum Physics (Berlin: Springer). 被引量:1
  • 2Roe P L 1981 1. Comput. Phys. 43 357. 被引量:1
  • 3Harten A 1983J. Comput. Phys. 49 357. 被引量:1
  • 4Yee H C, Klopfer G H and MontagneJ L 1990J. Comput. Phys. 8831. 被引量:1
  • 5Tadmor E 1987 Math. Comput. 4991. 被引量:1
  • 6Tadmor E 2003 Acta Numerica 12451. 被引量:1
  • 7Tadmor E and Zhong W G 2006J. Hyperbolic Diff. Eq. 3 529. 被引量:1
  • 8Ismail F and Roe P L 2009J. Comput. Phys. 2285410. 被引量:1
  • 9Lefloch P G, MercierJ M and Rohde C 2002 SIAMJ. Numer. Anal. 40 1968. 被引量:1
  • 10Fjordholm US, Mishra Sand Tadmor E 2012 SIAMJ. Numer. Anal. 50 544. 被引量:1

同被引文献10

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部