期刊文献+

光照突变场景中结合Phong模型的分层差分前景检测 被引量:3

Hierarchical Subtraction Combining Phong Model for Foreground Detection in Sudden Illumination Changes Scenes
下载PDF
导出
摘要 针对前景检测中光照突变问题和非平稳背景扰动问题,提出一种块级-像素级分层背景差分结合Phong模型的前景检测方法。首先,利用块级Sigma-delta背景差分算法快速检测前景区域且有效处理非平稳背景,然后利用Phong模型对前景区域进行光照突变处理提取出粗目标,最后利用像素级Sigma-delta算法对粗目标执行像素级前景提纯操作和对背景进行更新。实验表明,该方法在光照突变场景中及非平稳背景中能鲁棒实现前景检测。 To solve the problems of sudden illumination changes and non-stationary background disturbance during foreground detection,a foreground detection method combining block-level and pixel-level hierarchical background subtraction with Phong model was presented.First,the foreground areas are quickly detected and non-stationary background is effectively dealed with by using block-level Sigma-delta background subtraction algorithm.Then,the coarse targets are extracted from the foreground areas by using Phong model to deal with sudden illumination changes.Finally,the coarse targets are executed for pixel-level foreground refining operation and the background is updated by using pixel-level Sigma-delta algorithm.Experiments show that the method can achieve robust foreground detection in scenes with sudden illumination changes and non-stationary background.
出处 《计算机科学》 CSCD 北大核心 2015年第2期283-286,共4页 Computer Science
基金 国家自然科学基金项目(51278068) 湖南省科技计划项目(2012GK3060) 长沙理工大学电力与交通安全监控及节能技术教育部工程研究中心开放基金资助
关键词 前景检测 分层差分 光照变化 Sigma-delta滤波 PHONG模型 Foreground detection Hierarchical subtraction Illumination changes Sigma-delta filter Phong model
  • 相关文献

参考文献11

  • 1Reddy V,Sanderson C,Lovell B C.Improved foreground detection via block-based classifier cascade with probabilistic decision integration[J].IEEE Transactions on Circuits and System for Video Technology, 2013,3(1). 被引量:1
  • 2程全,马军勇.基于改进高斯混合模型的运动目标检测方法[J].计算机科学,2014,41(7):318-321. 被引量:7
  • 3Zhu Q,Shao L,Li Q,et al.Recursive Kernel Density Estimation for modeling the background and segmenting moving objects[C]∥2013 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP).IEEE,2013:1769-1772. 被引量:1
  • 4Pal A,Schaefer G.Robust background modelling using region–based codebooks[J].International Journal of Advanced Media and Communication,2014,5(2):233-244. 被引量:1
  • 5Manzanera A,Richefeu J C.A new motion detection algorithm based on sigma-delta background estimation[J].Pattern Recognition Letters,2007,8(3):320-328. 被引量:1
  • 6原春锋,王传旭,张祥光,刘云.光照突变环境下基于高斯混合模型和梯度信息的视频分割[J].中国图象图形学报,2007,12(11):2068-2072. 被引量:24
  • 7李加佳,彭启民.适应光照突变的运动目标检测算法[J].计算机辅助设计与图形学学报,2012,24(11):1405-1409. 被引量:13
  • 8Choi J M,Chang H J,Yoo Y J,et al.Robust moving object detection against fast illumination change[J].Computer Vision and Image Understanding,2012,6(2):179-193. 被引量:1
  • 9Phong B.Illumination for computer generated pictures[J].Communications of the ACM Commun.ACM, 1975,18(6):311-317. 被引量:1
  • 10Davis J,Sharma V.Background-Subtraction using Contour-based Fusion of Thermal and Visible Imagery[J].Computer Vision and Image Understanding,2007,106(2/3). 被引量:1

二级参考文献39

  • 1林开颜,吴军辉,徐立鸿.彩色图像分割方法综述[J].中国图象图形学报(A辑),2005,10(1):1-10. 被引量:322
  • 2王泽兵,杨朝晖.彩色图像分割技术研究[J].电视技术,2005,29(4):20-24. 被引量:20
  • 3肖梅,韩崇昭,张雷.基于时空背景差的运动目标检测算法[J].计算机辅助设计与图形学学报,2006,18(7):1044-1048. 被引量:17
  • 4Li Li-yuan,Huang Wei-min,Gu Yu-hua,et al.Statistical Modeling of Complex Backgrounds for Foreground Object Detection[J].IEEE Transactions on Image Processing,2004,13(11):1459-1472. 被引量:1
  • 5Arandjelovi,Cipolla R.Incremental learning of temporally-coherent Gaussian mixture models[A].In:Proceedings of British Machine Vision Conference[C],Oxford,UK,2005:759-768. 被引量:1
  • 6Michael Harville,Gaile Gordon,John Woodfill.Foreground segmentation using adaptive mixture models in color and depth[A].In:IEEE Proceedings of IEEE Workshop on Detection and Recognition of Events in Video[C],Vancouver,Canada,2001:3-11. 被引量:1
  • 7Stauffer C,Grimson W.Learning patterns of activity using real-time tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):747-757. 被引量:1
  • 8Stauffer C,Grimson W.Adaptive background mixture models for real-time tracking[A].In:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition[C],Fort Collins,Colorado,1999:246-252. 被引量:1
  • 9Paul Rosin.Thresholding for change detection[J].Computer Vision and Image Understanding,2002,88(2):79-95. 被引量:1
  • 10Chen Bai-sheng,Lei Yun-qi,Li Wang-wei.A novel background model for real-time vehicle detection[A].In:ICSP'04 Proceedings of IEEE 2004[C],Beijing,China,2004,(4):1276-1279. 被引量:1

共引文献41

同被引文献24

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部