期刊文献+

光照突变环境下基于高斯混合模型和梯度信息的视频分割 被引量:24

Video Segmentation of Illuminance Abrupt Variation Based on MOGs and Gradient Information
下载PDF
导出
摘要 基于高斯混合模型和帧间梯度信息提出了一种新的运动目标分割算法。首先,在利用亮度信息对背景建立自适应高斯混合模型的基础上,进行前景的粗分割;其次,由于视频信号的亮度和色彩分量随光照突变有较大的改变,导致大片背景的高斯模型产生错误匹配,误判为前景,为了提高高斯模型分割算法的鲁棒性,结合结构梯度互相关函数对分割结果进一步校正,能适应剧烈的光照变化;最后,利用数学形态学进行后处理,消除影子和孤立的噪声点。通过不同场景的运动分割实验结果表明,该算法在复杂背景和剧烈光照变化条件下具有较强的鲁棒性和较高的分割精度。 In this paper, a novel segmentation algorithm is proposed which is based on MOGs and interframe gradient information. Firstly, a primary foreground segmentation is obtained, where an adaptive MOGs (Mixture of Gaussians) is established for each plxel's luminance; Secondly, luminance and chroma of each pixel change largely due to the abrupt illuminance change, which causes the mismatch between a pixel's luminance and its MOGs, and causes the misclassification of a vast of background pixels as the foreground as well. To adapt to the illuminance sudden variation, an improved method using the interframe gradient information is adopted to correct the initial segmentation. Finally, morphological methods are used to remove shadows and isolated noise pixels. Experimental results on various video sequences show that this method is robust and of high segmentation accuracy.
出处 《中国图象图形学报》 CSCD 北大核心 2007年第11期2068-2072,共5页 Journal of Image and Graphics
关键词 复杂背景分割 高斯混合模型 结构梯度互相关函数 光照突变 complicated background segmentation, MOGs, structure gradient cross-correlation, illuminance abrupt variation
  • 相关文献

参考文献10

  • 1林开颜,吴军辉,徐立鸿.彩色图像分割方法综述[J].中国图象图形学报(A辑),2005,10(1):1-10. 被引量:322
  • 2王泽兵,杨朝晖.彩色图像分割技术研究[J].电视技术,2005,29(4):20-24. 被引量:20
  • 3魏弘博,吕振肃,蒋田仔,刘新艳.图像分割技术纵览[J].甘肃科学学报,2004,16(2):19-24. 被引量:32
  • 4Li Li-yuan,Huang Wei-min,Gu Yu-hua,et al.Statistical Modeling of Complex Backgrounds for Foreground Object Detection[J].IEEE Transactions on Image Processing,2004,13(11):1459-1472. 被引量:1
  • 5Arandjelovi,Cipolla R.Incremental learning of temporally-coherent Gaussian mixture models[A].In:Proceedings of British Machine Vision Conference[C],Oxford,UK,2005:759-768. 被引量:1
  • 6Michael Harville,Gaile Gordon,John Woodfill.Foreground segmentation using adaptive mixture models in color and depth[A].In:IEEE Proceedings of IEEE Workshop on Detection and Recognition of Events in Video[C],Vancouver,Canada,2001:3-11. 被引量:1
  • 7Stauffer C,Grimson W.Learning patterns of activity using real-time tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):747-757. 被引量:1
  • 8Stauffer C,Grimson W.Adaptive background mixture models for real-time tracking[A].In:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition[C],Fort Collins,Colorado,1999:246-252. 被引量:1
  • 9Paul Rosin.Thresholding for change detection[J].Computer Vision and Image Understanding,2002,88(2):79-95. 被引量:1
  • 10Chen Bai-sheng,Lei Yun-qi,Li Wang-wei.A novel background model for real-time vehicle detection[A].In:ICSP'04 Proceedings of IEEE 2004[C],Beijing,China,2004,(4):1276-1279. 被引量:1

二级参考文献58

  • 1刘健庄,谢维信.高效的彩色图像塔形模糊聚类分割方法[J].西安电子科技大学学报,1993,20(1):40-46. 被引量:5
  • 2刘重庆,程华.分割彩色图像的一种有效聚类方法[J].模式识别与人工智能,1995,8(A01):133-138. 被引量:7
  • 3Pal N R, Pal S K. A Revien on Image Segmentation Techniques[J]. Pattern Recognition, 1993, 26(9):1277-1294. 被引量:1
  • 4Huang L K, Wang M J. Image Thresholding by Minimizing the Measure of Fuzzines[J]. Pattern Recognition, 1995, 28(1) :41-51. 被引量:1
  • 5Corneloup G. Moysan J. BSCAN Image Segmentation by Thresholding Using Cooccurence Matrix Analysis[J]. Pattern Recognition, 1996, 29(2):281-296. 被引量:1
  • 6Ostu N. A Threshold Selection Method from Gray-level Histogram[J]. IEEE Trans on Systems. Man and Cybernetics,1978. SMC-9(1) :62-66. 被引量:1
  • 7Pun T. Entropic Thresholding, A New Approach[J]. Computer Graphics Image Processing, 1981. 16(3):210-239. 被引量:1
  • 8Lyengar S S, Deng W. An Efficient Edge Detection Algorithm Using Relaxing Labeling[J]. Pattern Recongition,1995. 28(4):519-536. 被引量:1
  • 9Farag A A, Delp E J. Edge Linking by Sequential Search[J]. Pattern Recognition, 1995, 28(5):611-633. 被引量:1
  • 10Zhang Y J. A Survey on Evaluation Methods for Image Segmentation[J]. Pattern Recognition, 1996, 29 (8): 1335-1346. 被引量:1

共引文献367

同被引文献185

引证文献24

二级引证文献101

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部