期刊文献+

基于脑电特征的酒后驾车事故倾向预估建模 被引量:2

A Prediction Model for Traffic Accident Proneness Caused by Drunk Driving via Numerical Characteristics of Drivers' EEGs
下载PDF
导出
摘要 为建立酒后驾车的事故倾向预估模型,测量了18位驾驶员不同程度饮酒后的脑电信号和交通事故倾向指标,并分别根据左额叶区脑电的长时周期度和瞬时复杂度计算规范化脑电δ波功率增益和脑电模糊熵.引进一种混合型Sigma-Pi模糊神经网络,研究网络权值训练方法,构建脑电特征参数和事故倾向指标之间的预估模型.实验结果表明:模型估计值与实际值吻合较好,具有一致增减特性,在驾驶员饮酒量小于50%主观最大饮酒量时误差很小,在饮酒量大于50%主观最大饮酒量时误差随饮酒量增大有所增加. This paper introduces the establishment of a predicting model for normalized traffic accident proneness (NAP) after drinking. Eighteen drivers; EEGs and traffic accident proneness were measured respectively in different drunken states. Considering the instant complexity and long-term periodicity of EEGs measured from the left frontal lobe, the power gain of 8 wave and fuzzy entropy of EEG were invented and calculated. A hybrid Sigma-Pi neural network was introduced and studied to help building the predict model for NAP from the aspects of both power gain of 8 wave and fuzzy entropy of EEG. Experiments proved that the predicted values of NAP accord with the actual values, with a consistent increase and decrease characteristic. When the amount of the alcohol drunk is less than 50% of the subjective maximum alcohol to drink, the errors were very small, but when the amount of the alcohol drunk is more than 50%, the errors became bigger along with the increase volume of alcohol to drink.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2015年第2期287-292,共6页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金资助项目(61104225 61004114)
关键词 酒后驾车 交通事故倾向 脑电图 δ波功率增益 模糊熵 drunk driving traffic accident proneness electroencephalogram (EEG) power gain of 8 wave fuzzy entropy
  • 相关文献

参考文献16

  • 1World Health Organization. Global status report on road safety: Time for action[M] Geneva.. WHO Press, 2009. 被引量:1
  • 2World Health Organization. Global status report on road safety: Supporting a decade of action[M]. Ge- neva~ WHO Press. 2013. 被引量:1
  • 3顾雯雯,俞敏,丛黎明.酒后驾车现状与危害及预防控制研究进展[J].中国预防医学杂志,2010,11(8):854-857. 被引量:4
  • 4钟铭恩,吴平东,彭军强,洪汉池.基于血液酒精浓度和脑电特征的酒后驾车事故倾向对比研究[J].中国生物医学工程学报,2013,32(3):378-383. 被引量:6
  • 5Murata K, Fujita E, Kojima S, et al. Noninvasive biological sensor system for detection of drunk driving [J], IEEE Transactions on Information Technology in Biomedicine, 2011, 15(1) :19-25. 被引量:1
  • 6Sakairi M, Suzuki D, Nishimura A, et al. Simulta- neous detection of breath and alcohol using breath-al-cohol sensor for prevention of drunk driving [J ]. IEICE Electronics Express, 2010, 7(6) ..467 472. 被引量:1
  • 7Koukiou G, Panagopoulos G, Anastassopoulos V. Drunk person identification using thermal infrared im- ages[C]// Processing of the 16th International Confer- ence on Digital Signal. Santorini, Greecea: IEEE Press, 2009: 4-6. 被引量:1
  • 8Bear M F, Connors t3 W, Paradiso M A. Neuro- science: Exploring the Brain 3rd edition[M]. USA: Lippincott Williams ~ Wilkins Press, 2007. 被引量:1
  • 9Papadelis S C, Chen Z, Papadeli C K. Monitoring sleepiness with on-board electrophysiologieal record- ings for preventing sleep-deprived traffic accidents [J]. Clinical Neurophysiology, 2007, 118 (09) : 1906 1922. 被引量:1
  • 10邹阳,苗夺谦,王登.醉酒者和正常人脑电的样本熵研究[J].中国生物医学工程学报,2010,29(6):939-942. 被引量:12

二级参考文献75

共引文献31

同被引文献13

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部