期刊文献+

基于Fisher分和支持向量机的特征选择算法 被引量:8

Feature selection algorithm based on Fisher value and support vector machine
下载PDF
导出
摘要 网络入侵数据集中存在的大量冗余和噪声特征严重影响检测系统的性能。针对该问题,提出一种基于Fisher分和支持向量机的入侵特征选择算法。通过对各维特征的Fisher分值排序,结合支持向量机分类算法,建立特征分类模型,筛选出具有最高检测率与误码率比值的最优特征组合。仿真结果表明,该算法筛选出的特征组合具有较高的检测率和较低的误码率,有效降低了检测系统的建模时间和测试时间,提高了系统性能。 There are many redundant and noisy characteristics in network intrusion detection data set,which leads to a bad performance of the detection system.To solve the problems,an intrusion feature selection algorithm based on Fisher value and support vector machine was proposed.By combining the support vector machine and sorting Fisher value of each dimensional feature,the optimal feature subset which owned the highest ratio of detection rate and bit error rate was selected.The simulation test results show that the method can eliminate noisy characteristics of the intrusion data set,reduce the modeling time and the testing time of the detection system,and improve the performance of the system.
出处 《计算机工程与设计》 CSCD 北大核心 2014年第12期4145-4148,4190,共5页 Computer Engineering and Design
基金 广西自然科学基金项目(2012GXNSFAA053224) 保密通信重点实验室基金项目(9140C110404110C1106) 广西教育厅基金项目(201010LX156 CD10066X)
关键词 入侵检测 Fisher分 支持向量机 特征选择 数据标准化 intrusion detection Fisher value support vector machine feature selection data standardization
  • 相关文献

参考文献10

  • 1Wang Suge,Li Deyu.A feature selection method based on improved fisher’s discriminant ratio for text sentiment classification[J].Expert Systems with Applications,2011,38(7):8696-8702. 被引量:1
  • 2Eunseog Youn,Lars Koenig.Support vector-based feature selection using Fisher’s linear discriminant and support vector machine[J].Expert Systems with Applications,2010,37(9):6148-6156. 被引量:1
  • 3王飒,郑链.基于Fisher准则和特征聚类的特征选择[J].计算机应用,2007,27(11):2812-2813. 被引量:21
  • 4张雪芹,顾春华.一种网络入侵检测特征提取方法[J].华南理工大学学报(自然科学版),2010,38(1):81-86. 被引量:28
  • 5Hsu C W,Chang C C,Lin C J.A practical guide to support vector classification[EB/OL].[2010-04-15].http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf. 被引量:1
  • 6落红卫.网络入侵检测系统及性能指标[J].电信网技术,2005(11):24-26. 被引量:6
  • 7KDDCup99KDDdataset[EB/OL].[2011-06-16].http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html. 被引量:1
  • 8LibSVM[EB/OL].[2011-04-01].http://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html. 被引量:1
  • 9Chang Chih-Chung,Lin Chih-Jen.LIBSVM:A library for support vector machines[J].ACM Transactions on Intelligent Systems and Technology,2011,2(27):1-27. 被引量:1
  • 10陈铁明,马继霞,宣以广.快速特征选择方法及其在入侵检测中的应用[J].通信学报,2010,31(9A):233-238. 被引量:1

二级参考文献18

  • 1陈友,程学旗,李洋,戴磊.基于特征选择的轻量级入侵检测系统[J].软件学报,2007,18(7):1639-1651. 被引量:78
  • 2Blum A L, Langley P. Selection of relevant features and examples in machine learning [J]. Artificial Intelligence, 1997,97(1/2) :245-271. 被引量:1
  • 3Baglioni M, Furletti B, Turini F. DrC4.5 : improving C4. 5 by means of prior knowledge [ C ] //Proc of the ACM Symp on Applied Computing. Santa Fe : ACM, 2005 : 474- 481. 被引量:1
  • 4Kim D S, Park J S. Network based intrusion detection with support vector machines [ C ] // Information Networking. Berlin/Heidelberg : Springer-Verlag, 2003:747-756. 被引量:1
  • 5Kim D S, Nguyen H N, Ohn S Y. et al. Fusions of GA and SVM for anomaly detection in intrusion detection system [ C ] //Advances in Neural Networks. Berlin/Heidelberg : Springer-Verlag, 2005 : 415 - 420. 被引量:1
  • 6Theodoridis Sergios, Koutroumbas Konstantinos. Pattern recognition [ M ]. 2nd ed. Salt Lake City: Elsevier Academic Press, 1999. 被引量:1
  • 7Cortes C, Vapnik V. Support vector networks [ J ]. Machine Learning, 1995,20 ( 3 ) : 273- 297. 被引量:1
  • 8UCI machine learning repository : KDDCUP' 99 dataset [ EB/OL]. ( 1999- 01- 01 ). http: // archieve, ics. uci. edu/ml/datasets. 被引量:1
  • 9Mukkamala Srinivas, Sung Andrew H. Feature ranking and selection for intrusion detection using support vector machines [ R]. New Mexico: New Mexico Institute of Mining and Technology Socorro,2002. 被引量:1
  • 10Chang Chih-Chung, Lin Chih-Jen. LIBSVM-a library for support vector machines [ EB/OL]. [ 2001-12-11 ]. http:// www. csie. ntu. edu. tw/- cjlin/libsvm. 被引量:1

共引文献52

同被引文献44

引证文献8

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部