期刊文献+

一种网络入侵检测特征提取方法 被引量:28

A Method to Extract Network Intrusion Detection Feature
下载PDF
导出
摘要 为了去除冗余特征,降低系统存储和运算负担,提高网络入侵检测分类器的性能,文中提出了一种基于Fisher分和支持向量机的网络入侵检测特征提取方法.针对KDD′99网络入侵检测数据集,应用该方法得到了混合攻击和4种单一攻击模式下的特征重要度排序,选取重要特征建立支持向量机入侵检测分类器.结果表明,该分类器精度与使用全部特征构建的支持向量机分类器相当,训练和测试时间则显著降低. In order to eliminate redundant features, reduce the system burden of storage and computation, and improve the performance of the classifier for network intrusion detection, a method to extract network intrusion detection feature is proposed based on the Fisher score and the support vector machine (SVM). Then, in accordance with KDD'99 network intrusion detection dataset, the feature significance rankings for the mixed attack and four single attacks are respectively obtained by using the proposed method. By extracting important features, a SVM classifier is thus constructed. Experimental results show that, as compared with the classifier constructed based on all features, the new classifier is of approximately equivalent accuracy and dramatically low training and testing time cost.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第1期81-86,共6页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(60773094)
关键词 入侵检测系统 特征选取 Fisher分 支持向量机 intrusion detection system feature extraction Fisher score support vector machine
  • 相关文献

参考文献11

  • 1Blum A L, Langley P. Selection of relevant features and examples in machine learning [J]. Artificial Intelligence, 1997,97(1/2) :245-271. 被引量:1
  • 2邓九英,杜启亮,毛宗源,姚琛.基于粗糙集与支持向量机的分类算法[J].华南理工大学学报(自然科学版),2008,36(5):123-127. 被引量:8
  • 3Baglioni M, Furletti B, Turini F. DrC4.5 : improving C4. 5 by means of prior knowledge [ C ] //Proc of the ACM Symp on Applied Computing. Santa Fe : ACM, 2005 : 474- 481. 被引量:1
  • 4Kim D S, Park J S. Network based intrusion detection with support vector machines [ C ] // Information Networking. Berlin/Heidelberg : Springer-Verlag, 2003:747-756. 被引量:1
  • 5Kim D S, Nguyen H N, Ohn S Y. et al. Fusions of GA and SVM for anomaly detection in intrusion detection system [ C ] //Advances in Neural Networks. Berlin/Heidelberg : Springer-Verlag, 2005 : 415 - 420. 被引量:1
  • 6陈友,程学旗,李洋,戴磊.基于特征选择的轻量级入侵检测系统[J].软件学报,2007,18(7):1639-1651. 被引量:78
  • 7Theodoridis Sergios, Koutroumbas Konstantinos. Pattern recognition [ M ]. 2nd ed. Salt Lake City: Elsevier Academic Press, 1999. 被引量:1
  • 8Cortes C, Vapnik V. Support vector networks [ J ]. Machine Learning, 1995,20 ( 3 ) : 273- 297. 被引量:1
  • 9UCI machine learning repository : KDDCUP' 99 dataset [ EB/OL]. ( 1999- 01- 01 ). http: // archieve, ics. uci. edu/ml/datasets. 被引量:1
  • 10Mukkamala Srinivas, Sung Andrew H. Feature ranking and selection for intrusion detection using support vector machines [ R]. New Mexico: New Mexico Institute of Mining and Technology Socorro,2002. 被引量:1

二级参考文献11

  • 1张国宣,孔锐,施泽生,郭立.一种新的基于聚类的SVM迭代算法[J].仪器仪表学报,2004,25(z1):613-614. 被引量:2
  • 2徐袭,姚琼荟,石敏.基于粗糙集与支持向量机的故障智能分类方法[J].计算技术与自动化,2006,25(1):32-34. 被引量:8
  • 3邓九英,毛宗源,徐宁.基于粗糙集属性变分区的属性约简[J].华南理工大学学报(自然科学版),2006,34(9):50-55. 被引量:7
  • 4邓乃扬,田英杰.数据挖掘中的新方法——支持向量机[M].北京:科学出版社,2006:328-355. 被引量:1
  • 5Asuncion Arthur, Newman David. The UCI machine learning repository [ EB/OL ]. [ 2007-06-10 ]. http :// archive, ics. uci. edu/ml/machine-learning-databases/. 被引量:1
  • 6Vapnik V. The nature of statistical learning theory [ M ]. Berlin : Springer-Verlag, 1995. 被引量:1
  • 7Platt J. Sequential minimal optimization:a fast algorithm for training support vector machines [ R ]. Redmond, WA: Microsoft Research, 1998. 被引量:1
  • 8Mattera D, Palmieri F, Haykin S. An explicit algorithm for training support vector machines [ J]. Signal Processing Letters, 1999,9 ( 6 ) : 243- 245. 被引量:1
  • 9Lipowski J, Jankowski S. Accelerating SMO algorithm on parallel architectures [ J ]. Proc of SPIE, 2006, 6159 : 61592Y-1-61592Y-9. 被引量:1
  • 10Zhang Guo-yun, Zhang Jing. A hybrid RS-SVM dynamic prediction approach to rotary kiln sintering process [ C ]// Proceedings of 2004 International Conference on Machine Learning and Cybernetics. Hangzhou, China : IEEE, 2004 :1478-1482. 被引量:1

共引文献83

同被引文献190

引证文献28

二级引证文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部