期刊文献+

基于最优熵与EEMD的滚动轴承微故障诊断方法 被引量:1

Slight Fault Diagnosis Method of Rolling Bearing Based on Optimal Entropy and EEMD
下载PDF
导出
摘要 滚动轴承是易损件,为了更好并及时检测出在信噪比低的情况下的轴承早期微故障振动信号,提出了小波包最优熵和EEMD相结合的方法。运用小波包最优熵对采集信号实现信噪分离,突出了小波包降噪效果明显;通过EEMD将信号分解成多个分量;最后以互相关、峭度准则提取故障信号分量以避免分量选择的盲目性。结果表明:该方法对轴承初期故障具有良好的降噪效果,可以准确快速地检测出轴承故障,从而表明该方法是有效且可行的。 Rolling bearing is the easy wearing part. In order to better and timely detect early and slight bearing fault vibration sig- nal under low signal-noise ratio, the method of wavelet packet optimal entropy combined with EEMD was proposed. Signal-noise separa- tion was achieved by wavelet packet optimal entropy, which highlighted the wavelet packet noise reduction effect was obvious, through EEMD decomposed the signal into a plurality of component. Finally, cross-correlation, kurtosis criterion were used to extract fault sig- nal component in order to avoid the blindness of component selection. The results show that : the method of bearing early fault has good noise reduction effect, which can accurately and quickly detect bearing fault, thereby to show that the method is feasible and effective.
出处 《机床与液压》 北大核心 2015年第3期189-193,共5页 Machine Tool & Hydraulics
基金 内蒙古自治区自然科学基金项目(2012MS0717)
关键词 小波包最优熵 EEMD 互相关 峭度 轴承故障 Wavelet packet optimal entropy EEMD Cross-correlation Kurtosis Bearing fault
  • 相关文献

参考文献11

  • 1LIN Jawren.Non-newtonian Effects on the Dynamic Charac- teristics of One-dimensional Slider Bearings: Rabinowitsch Fluid Mode [ J ]. Tribology Letters, 2001,10 (4) : 237- 243. 被引量:1
  • 2HUANG N E, SHEN Z, LONG S R, et al. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlin- ear and Non-stationary Time Series Analysis [ J ]. Proceed- ings of the Royal Society of London. Series A: Mathemati- cal, Physical and Engineering Sciences, 1998,454: 903- 995. 被引量:1
  • 3COIFMAN RR, WICKERHAUSER MV. Entropy-based Al- gorithms for Best Basis Selection[ J] .IEEE Transactions on Information Theory, 1992,38(2) :713-718. 被引量:1
  • 4WU Z, HUANG N E.Ensemble Empirical Mode Decomposi- tion a Noise-assisted Data Analysis Method [ R ]. Center for Ocean-Land-Atmosphere Studies, Technical Report 193, 2005. 被引量:1
  • 5WU Z H, HUANG N E.Ensemble Empirical Mode Decom- position-A Noise Assisted Data Analysis Method [ J ]. Ad- vances in Adaptive Data Analysis,2009,1 (1) :1-41. 被引量:1
  • 6彭畅,柏林,谢小亮.基于EEMD、度量因子和快速峭度图的滚动轴承故障诊断方法[J].振动与冲击,2012,31(20):143-146. 被引量:57
  • 7赵志宏,杨绍普.一种基于样本熵的轴承故障诊断方法[J].振动与冲击,2012,31(6):136-140. 被引量:132
  • 8苏文胜,王奉涛,张志新,郭正刚,李宏坤.EMD降噪和谱峭度法在滚动轴承早期故障诊断中的应用[J].振动与冲击,2010,29(3):18-21. 被引量:255
  • 9ANTONI J,RANDALL R B.The Spectral Kurtosis:a Useful Tool for Characterizing Non-stationary Signals[ J ]. Mechani- cal Systems and Signal Processing,2006,20(2) :282-307. 被引量:1
  • 10ANTONI J, RANDALL R B.The Spectral Kurtosis : Appli- cation to the Vibratory Surveillance and Diagnostics of Ro- tating Machines [ J ]. Mechanical Systems and Signal Pro- cessing, 2006,20 (2) : 308- 331. 被引量:1

二级参考文献62

共引文献512

同被引文献9

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部