期刊文献+

金属锶的声子谱及振动性质的研究 被引量:2

Study on Phonon Spectra and Vibration Property of Metal Strontium
下载PDF
导出
摘要 基于改进分析型嵌入原子法模型和晶格动力学理论,在谐和近似下重现了面心立方金属锶沿[00ζ]、[0ζζ]、[ζζζ]和[0ζ1]四个高对称方向上声子谱的实验结果,预测了沿[0.5 1-αα]、[0.5+α1-α0]、[0.5+α0.5+α0.5-2α]和[α1-αα]四个低对称方向上的声子谱,并讨论了不同对称方向上不同色散支的兼并特征和振动性质。结果发现:高对称方向上声子谱的计算结果与实验结果非常吻合,在低频附近二者完全一致。在[00ζ]和[ζζζ]两个高对称方向上,振动方向不同的两个声频横波模AT1和AT2兼并为一个声频横波模AT;在其它高对称方向上没有兼并现象,各个色散支的振动方向和振动模式不随波矢变化。 Within the harmonic approximation, the experimental results of the phonon spectra in fcc metal strontium along four high-symmetry directions [00ζ], [0ζζ], [ζζζ] ,and [0ζ1] were reproduced,and the phonon spectra of strontium along four low-symmetry directions [0.5 1-α α],[0.5+α 1-α 0],[0.5+α 0.5+α 0.5-2α] and [α 1-α α] were predicted based on the modified analytic embedded atom method and the theory of lattice dynamics. Then the merger characteristics and vibration properties of different dispersion branches at different directions were discussed. The results show that the calculated results are in agreement with available experimental results along high-symmetry directions, especially for lower frequency rather than at the first Brillouin zone boundaries. Along [00ζ] and [ζζζ] directions, two acoustic dispersion branches with different vibrations AT1 and AT2 merge into a dispersion branch AT. There are no merger phenomena observed along other directions, and the vibration directions and vibration modes of the dispersion branches does not change with wave vector.
出处 《材料导报》 EI CAS CSCD 北大核心 2015年第4期136-140,共5页 Materials Reports
基金 陕西省教育厅科研计划项目(14JK1301) 陕西省自然科学基金(2012JM1011)
关键词 声子谱 振动性质 改进分析型嵌入原子法 高对称方向 低对称方向 phonon spectrum, vibration property, modified analytic embedded atom method, high-symmetry direction, low-symmetry direction
  • 相关文献

二级参考文献25

  • 1Liu Z X, Huang Y C, Liu Y and Jia T Q .1998 Acta Phys Sin (Overseas Edition) 7 28. 被引量:1
  • 2Liu Z X, Weng Y G, Shi J J and Wang Z J .1999 Acta Phys Sin (Overseas Edition) 8 361. 被引量:1
  • 3Liang X X and Yang J S .1996 Solid State Commun 100 629. 被引量:1
  • 4Zheng R S and Matsuura M .1999 Phys Rev B 59 15422. 被引量:1
  • 5Kim K W and Stroscio M A .1990 J Appl Phys 68 6289. 被引量:1
  • 6Liang X X and Ban S L .2001 J Luminescence 94-95 781. 被引量:1
  • 7Born M and Huang K .1954 Dynamical Theory of Crystal Lattices (London: Oxford University Press). 被引量:1
  • 8Fukai Y .1963 J Phys Soc Japan 18 1413. 被引量:1
  • 9See for example, Harris C G .1975 Introduction to Modern Theoretical Physics (New York: Wiley). 被引量:1
  • 10Lee T D, Low F E and Pines D .1953 Phys Rev 90 297. 被引量:1

共引文献15

同被引文献8

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部