期刊文献+

基带回波扩散参数AT-Tree模式挖掘实现

Baseband Echo Diffusion Parameters Mining Baesd on AT-Tree Model
下载PDF
导出
摘要 对高速运动目标的基带回波扩散参数的准确估计和挖掘是实现目标信号检测和参量估计的重要内容。高速运动目标在发射脉冲是产生多普勒扩散,导致在速度模糊的情况下对基带回波参数估计困难。提出一种基于AT-Tree模式挖掘模式的运动目标的基带回波扩散参数估计算法。构建高速运动目标信号模型和目标多普勒扩散模型,基于AT-Tree模式进行基带回波随机过程分析,建立项的平均概率值得到AT-Tree树型结构,将有序的项集添加到AT-Tree上,实现对基带回波扩散参数的挖掘和估计,在分辨力足够的前提下,对参数实现高分辨搜索,提高挖掘性能。仿真结果表明,该算法能使高速运动目标的基带回波调频信号在分数域上能形成明显的能量积聚,形成一个冲激函数,基带回波扩散参数的数据挖掘的精确度较高,精度较好,在制导参数估计和目标检测等领域应用价值较高。 The accurate estimation of diffusion parameters and mining baseband echo of moving targets is very important for realizing the target signal detection and parameter estimation. The high speed moving target in the emission pulse is difficult to estimate the Doppler diffusion, leading to baseband echo parameters in the fuzzy velocity under. A mining model based on the AT-Tree model of the moving target parameter estimation algorithms of baseband echo diffusion is proposed. Construction of the high speed moving target signal model and target Doppler diffusion model, analysis of baseband echo stochastic process based on AT-Tree mode, establish the average probability of worth to the AT-Tree tree structure, will set ordering items added to the AT-Tree, mining and estimation of baseband echo diffusion parameters, based on resolution enough, on parameters to achieve high resolution search, improve the mining performance. The simulation results show that the algorithm can make the baseband echo FM signal of high speed moving objects can form obvious energy accumulated in the fractional domain, the formation of an impulse function is obtained, baseband echo diffusion parameter data mining with high accuracy, it has good precision, it is a good guidance of parameter estimation and target detection, it has good application value.
出处 《科技通报》 北大核心 2015年第2期179-181,共3页 Bulletin of Science and Technology
基金 江西省科技支撑计划项目(2011ZBBE50029) 江西省教育厅科学技术研究项目(GJJ13086)
关键词 多普勒 高速运动 目标检测 数据挖掘 Doppler moving target target detection data mining
  • 相关文献

参考文献6

二级参考文献36

  • 1张顺生,张伟.低信噪比下基于Keystone变换的多目标检测[J].电子科技大学学报,2008,37(S1):23-26. 被引量:8
  • 2颜跃进,李舟军,陈火旺.基于FP-Tree有效挖掘最大频繁项集[J].软件学报,2005,16(2):215-222. 被引量:68
  • 3陶然,邓兵,王越.分数阶FOURIER变换在信号处理领域的研究进展[J].中国科学(E辑),2006,36(2):113-136. 被引量:80
  • 4AGRAWAL R,SRIKANT R.Fast Algorithms for Mining Association Rulesin Large Database[R].IBM Almaden Research Center,TechnicalReport:FJ9839,1994. 被引量:1
  • 5HAN J,KAMBER M.Data Mining:Concepts and Techniques[M].Beijing:High Education Press,2001. 被引量:1
  • 6AGRAWAL R,IMIELINSKI T,SWAMI A.Mining Association RulesBetween Sets of Items in Large Databases[C]//Proceedings of theACM SIGMOD Conference on Management of Data.[S.l.]:ACMPress,1993. 被引量:1
  • 7Fan Ming,Meng Xiaofeng.Data Mining:Concepts andTechniques[M].Beijing:Mechanical Industrial Press,2001. 被引量:1
  • 8AGRAWAL R,SRIKANT R.Fast Algorithm for Mining AssociationRules[C]//Proceedings of the 20th International Conference onVLDB.Santiago:[s.n.],1994. 被引量:1
  • 9Vitter J S. Random sampling with a reservoir [ J]. ACM Transactions on Mathematical Software, 1985, 11 ( 1 ) : 37 - 57. 被引量:1
  • 10Gibbons P, Matias Y. New sampling-based summary statistics for improving approximate query answers[ C] //Proceedings of ACM SIGMOD International Conference on Management of Data. Washington D C, 1998:331 - 342. 被引量:1

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部