期刊文献+

基于拉普拉斯分值特征选择的运动捕获数据关键帧提取 被引量:5

Key-frame extraction of motion capture data via Laplacian Score based feature selection
下载PDF
导出
摘要 针对已有的运动捕获数据关键帧提取方法常常忽略运动数据局部拓扑结构特性问题,提出了一种基于拉普拉斯分值LS特征选择的人体运动数据关键帧提取方法。该方法首先从原始运动数据集中提取两种代表性的特征向量并对其归一化,利用LS算法对组合后的特征向量进行打分和特征权重学习,以获取能够判别性揭示局部运动信息的特征子向量;其次,通过构建综合特征函数并基于极值判别原理,得到初始候选关键帧序列;最后,根据时间阈值约束和姿态相似判别策略,利用改进的k-means算法对候选帧进行聚类筛选,以达到去除冗余关键帧的目的,从而得到最终关键帧序列集合。仿真实验结果表明,该方法提取的关键帧序列具有典型性,能较好地对整体运动捕获数据进行视觉概括。 Existing key frame extraction methods often fail to reveal the local topological structure of motion capture data. To this effect,we present a Laplacian Score (LS) based feature selection approach to extract the key frames from the motion capture data. The proposed approach first extracts two kinds of representative and normalized feature vectors from the original motion capture data,and then employs LS algorithm to learn the scores and weights of the combined feature vectors. Accordingly,the discriminative feature subspace holding the promise of identifying the local motion information can be constructed. Subsequently, the initial key frame sequences can be obtained by the utilization of the comprehensive characteristic function and the extreme discrimination principle. With the constraints of the time threshold and discrimination strategies of similar poses,we further utilize the improved k-means algorithm to cluster the candidate frames such that the final key frames can be obtained to remove the redundant ones. The experimental results show that the typical key frames extracted by the proposed approach have better visual summary of the whole motion capture data.
出处 《计算机工程与科学》 CSCD 北大核心 2015年第2期365-371,共7页 Computer Engineering & Science
基金 国家自然科学基金资助项目(61202298 61202297 61300138)
关键词 关键帧提取 运动捕获 局部拓扑结构 拉普拉斯分值 特征选择 key frame extraction motion capture data local topological structure Laplacian Score feature selection
  • 相关文献

参考文献5

二级参考文献47

  • 1沈军行,孙守迁,潘云鹤.从运动捕获数据中提取关键帧[J].计算机辅助设计与图形学学报,2004,16(5):719-723. 被引量:44
  • 2杨涛,肖俊,吴飞,庄越挺.基于分层曲线简化的运动捕获数据关键帧提取[J].计算机辅助设计与图形学学报,2006,18(11):1691-1697. 被引量:27
  • 3Lim I S,Thalmann D.Key-posture extraction out of human motion data by curve simplification[C]//Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society,Istanbul,2001,2:1167-1169. 被引量:1
  • 4Assa J,Caspi Y,Cohen-Or D.Action synopsis:pose selection and illustration[J].ACM Transactions on Graphics,2005,24(3):667-676. 被引量:1
  • 5Togawa H,Okuda M.Position-based keyframe selection for human motion animation[C]//Proceedings of the 11th International Conference on Parallel and Distributed Systems-Workshops,Fukuoka,2005,2:182-185. 被引量:1
  • 6Li S Y,Okuda M,Takahashi S I.Embedded key-frame extraction for CG animation by frame decimation[C]//Proceedings of IEEE International Conference on Multi media & Expo,Amsterdam,2005:1404-1407. 被引量:1
  • 7Liu F,Zhuang Y T,Wu F,et al.3D motion retrieval with motion index tree[J].Computer Vision and Image Understanding,2003,92(2]3):265-284. 被引量:1
  • 8Park M J,Shin S Y.Example-based motion cloning[J].Computer Animation and Virtual Worlds,2004,15(3/4):245-257. 被引量:1
  • 9Bulut E,Capin T.Key frame extraction from motion capture data by curve saliency[C]//Proceedings of the 20th International Conference on Computer Animation and Social Agents,Hasselt,2007:182-185. 被引量:1
  • 10Lim IS, Thalmann D. Key Posture Extraction out of Human Motion Data by Curve Simplification [C]// Proceedings of the International Conference of the IEEE Engineering in Medicine and Biology Society, Istanbul, Turke.y, 2001. USA: IEEE, 2001:1167-1169. 被引量:1

共引文献61

同被引文献36

引证文献5

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部