期刊文献+

基于LS-SVM和GM的球磨机料位动态软测量 被引量:5

LS-SVM and GM based dynamic soft sensor for coal level of ball mills
下载PDF
导出
摘要 提出了一种基于最小二乘支持向量机(LS-SVM)和灰色模型(GM)的钢球磨煤机料位动态软测量方法,分析了料位的影响因素,确定了软测量模型的辅助变量;基于LS-SVM建立料位软测量静态模型,将静态模型测量结果与实际值比较,获得测量误差时间序列,并采用GM对其建模和预测;将预测的误差结果与静态模型输出进行叠加,实现对测量结果的动态校正。实际应用结果表明,该方法能够有效地反映料位的变化趋势和动态特性,比单纯LS-SVM模型测量具有更高的精度和适用性。 A least squares support vector machine(LS-SVM)and grey model(GM)based dynamic soft sensor method for ball mills was proposed.By analyzing the factors affecting the coal level,the auxiliary variables of the soft sensor model were determined.The LS-SVM based soft sensor static model was established,of which the results were compared with that of the actual values.Thus the time measurement errors sequence was obtained and then modeled and predicted by the GM.Finally,the predictive error results were combined with the static model to realize dynamic correction.Application example shows this method can reflect the trend and dynamic characteristics of coal level effectively,which has a higher accuracy and applicability than the single LS-SVM model.
出处 《热力发电》 CAS 北大核心 2015年第1期77-81,共5页 Thermal Power Generation
基金 国家自然科学基金资助项目(50775035) 江苏省自然科学基金资助项目(BK2011391)
关键词 钢球磨煤机 料位 动态软测量 最小二乘支持向量机 灰色模型 ball mill fill level dynamic soft sensor least squares support vector machine grey model
  • 相关文献

参考文献11

二级参考文献32

共引文献46

同被引文献41

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部