期刊文献+

基于SVM的燃煤电站锅炉飞灰含碳量预测 被引量:17

Forecasting Unburned Carbon Content in the Fly Ash from Coal-Fired Utility Boilers Based on SVM
下载PDF
导出
摘要 将支持向量机方法引入燃煤电站锅炉飞灰含碳量预测领域.该预测方法很好地建立了燃煤电站锅炉飞灰含碳量特性与运行参数之间的复杂关系模型,并考虑到运行参数之间的耦合性,具有预测能力强、全局最优及泛化性好等优点.将该方法应用于某300 MW燃煤电站锅炉中,经过训练后的SVM模型对检验样本飞灰含碳量进行预测,均方根误差和平均相对误差分别为1.39%和1.30%,相当于BP网络模型的22.20%和21.07%.应用结果表明,支持向量机方法优于多层BP神经网络法,能很好地满足预测要求. A new algorithm for forecasting the unburned carbon content in the fly ash from coal-fired utility boilers based on the support vector machine (SVM) method is presented. This forecasting method establishes a model to reflect the complicated relations between the unburned carbon content characteristics in the fly ash and the operating parameters, with the coupling performance of every parameter considered, It has the advantages of high forecasting accuracy, global optima property, and more generalized performance. Apphed to a 300 MW coal-burning utility boiler, the SVM model which had been trained forecasted the unburned carbon in the fly ash in the test samples set, and got the mean square root error and the mean relative error of 1.39%, and 1.30%, respectively, which are 22.20% and 21.07% of BP network model. These resuhs show that SVM method is more accurate than the BP neural network, and can satisfy the forecasting demand well.
出处 《燃烧科学与技术》 EI CAS CSCD 北大核心 2006年第4期312-317,共6页 Journal of Combustion Science and Technology
关键词 锅炉 飞灰含碳量 支持向量机 utility boiler unburned carbon content support vector machine
  • 相关文献

参考文献15

二级参考文献45

  • 1刘文鹏,王乃文.飞灰含碳量在线监测技术在电站锅炉上应用的探讨[J].电站系统工程,1994,10(1):52-54. 被引量:10
  • 2李小江.燃料试验方法“飞灰和炉渣可燃物的测定”中存在的问题及建议[J].热力发电,1995,24(3):41-43. 被引量:4
  • 3陈学俊 陈听宽.锅炉原理(第二版)[M].西安:西安交通大学出版社,1991.. 被引量:5
  • 4金定安.工业锅炉原理[M].西安:西安交通大学出版社,1986,11.. 被引量:25
  • 5Liu K. Comparison of very short-term load forecasting technique[J]. IEEE Trans. Power Systems, 1996,11(2): 877-882. 被引量:1
  • 6Hippert H S, Pefreira C E, Souza R C. Neural network for short-term load forecasting: A review and evaluation[J].IEEE Trans. Power System. 2001,16(2): 44-54. 被引量:1
  • 7Muller K R, Smola A J, Ratsch G, et al.Prediction time series with support vector machines[C].In Proc of ICANN'97., Springer LNCS 1327, Bedin,1997, 999-1004. 被引量:1
  • 8Papadakis S E, Theocharis J B, Kiartzis S J, et al. A novel approach to short-term load forecasting using fuzzy neural net-works[J].IEEE Trans. Power Systems, 1998,13(2):480-492. 被引量:1
  • 9Vapnik V, Golowich S, Smola A. Support vector method for function approximation, regression estimation, and signal processing[M].Cambridge, MA, MIT Press, 1997, 281-287. 被引量:1
  • 10Smola A J. Regression estimation with support vector learning machines[D]. Technische Universit"at M" unchen.1996. 被引量:1

共引文献417

同被引文献157

引证文献17

二级引证文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部