摘要
为了探明部分填充混凝土圆形钢桥墩破坏机理和抗震性能,对部分填充混凝土圆形钢桥墩柱在轴力和水平往复荷载作用下的弹塑性力学性能进行了试验和数值分析。在长细比、径厚比参数相同的条件下,制作了2组共8根桥墩柱试件,考察混凝土填充高度对该类桥墩柱最大承载力、延性等抗震性能的影响。同时,为了进一步讨论试件应力分布及变形破坏情况,对8根试验试件采用非线性有限元软件ABAQUS进行了数值分析。结果表明:与空钢管桥墩柱相比,部分填充混凝土圆形钢桥墩柱具有良好的抗震性能;随着混凝土填充率ξ的增加,该类桥墩柱的最大承载力和延性均有显著提高;对于SC34-66系列4个试件,ξ达到0.28后,持续增加混凝土的填充率,虽然能提高试件的承载力,但延性下降;结构破坏时钢管根部出现了应力集中现象,混凝土等效塑性应变分布范围较大,表明钢管与混凝土共同有效地抵御了外荷载作用。
In order to invest filled steel (CFS) circular lga bri numerical analysis of partially te failure mechanism and seismic performance of partially concretedge piers, the elastio-plastic mechanical behavior experiment and CFS circular piers were carried out under constant axial load and cyclic lateral load. At the same slenderness ratio and radius-thickness ratio, 8 specimens in two series had been examined to study the impact of the filled concrete height on the maximum strength and the ductility. And in order to study the stress distribution and deformation damage of specimens, these 8 specimens had been numerically analyzed by nonlinear finite elcmcnl analysis ABAQUS package. The results show that through comparison with hollow steel tube piers, partially CFS circular piers behave better in seismic performance. As the filled concrete ratio increases, the maximum strength and ductility of the pier are improved significantly.However it can be found that (SC34-66 series) is improved when reaches 0. 28, though the maximum strength of the pier as increases, the ductility declines. It is found that stress concentration occurs at the root of steel tube and the distribution of equivalent plastic strain of concrete is large while structure fails through FEM analysis, which indicates that the steel tube and concrete together resist the external loads effectively .
出处
《中国公路学报》
EI
CAS
CSCD
北大核心
2015年第1期62-70,共9页
China Journal of Highway and Transport
基金
国家自然科学基金项目(51178275)
辽宁省高等学校杰出青年学者成长计划项目(LJQ2014060)
辽宁省自然科学基金项目(2013020149)
关键词
桥梁工程
部分填充混凝土圆形钢桥墩
试验与有限元分析
最大承载力
延性
bridge engineering
partially concrete-filled steel circular bridge pier
experiment andfinite element analysis
maximum strength
ductility