期刊文献+

基于改进的迭代式核方法协同过滤推荐算法研究 被引量:1

A Collaborative Filtering Recommender Algorithm based on Iterative Kernel Method
下载PDF
导出
摘要 传统的协同过滤方法是一种有效的推荐方法,然而在应对冷启动用户或稀疏的评价矩阵时,系统的性能显著下降。为了提高推荐系统应对冷启动用户和稀疏数据的能力,本文提出了一种迭代式的基于核方法的协同过滤算法。首先根据用户对项的评价矩阵序列构建一个数据立方,并针对连续值、有序离散值和无序离散值三种类型定义3个核函数以及基于核函数的预测值估计器,最后根据相应的核函数估计器预测评价矩阵中的未知元素。实验结果表明,本文提出的算法与基于用户的和基于项的协同过滤方法相比误差小,并能更好的应对冷启动用户和稀疏的评价矩阵。 Collaborative filtering is an effective start users and sparse rating matrix, the performance method in recommender system. However, while dealing with cold of collaborative filtering decreases quickly. In order to improve the ability of handle cold start users and sparse rating matrix, this paper proposes an iterative collaborative filtering recommender algorithm based on kernel method. Firstly, builds a data cube according to the user-item rating matrixes, defines three kernel functions for continuous value, ordering discrete values and non-ordering discrete values, designs three kemel estimators based on these kernel functions, and finally, predicts unknown ratings with the proposed kernel estimators. The experiments show that, compared with user based and item based collaborative filtering methods, the proposed algorithm has less predicting error, and can handle cold start users and sparse rating matrix more effectively.
作者 刘丽
出处 《信息技术与信息化》 2014年第12期76-81,共6页 Information Technology and Informatization
关键词 协同过滤 核方法 推荐系统 Collaborative filtering Kernel method Recommender System Nearest neighbor
  • 相关文献

参考文献10

  • 1Zanker M, Felfernig A, Friedrich G. Recommender systems: an introduction[M]. Cambridge University Press, 2011. 被引量:1
  • 2Sarwar B, Analysis of Karypis G, Konstan J, et al recommendation algorithms e-commerce[C]//Proceedings of the 2nd conference on Electronic commerce. 2009:158-167 for ACM ACM,. 被引量:1
  • 3Sarwar B, Karypis G, Konstan J, et al. Item- based collaborative filtering recommendation algorithms[C]//Proceedings of the 10th international conference on World Wide Web. ACM, 2009: 285-295. 被引量:1
  • 4Cacheda F, Carneiro V, Fernandez D, et al. Comparison of collaborative filtering algorithms: Limitations of current techniques and proposals for scalable, high- performance recommender systems[J]. ACM Transactions on the Web (TWEB), 2011, 2-011. 被引量:1
  • 5Linden G, Smith recommendations: I filtering[J]. In B, York J. Amazon. com tem-to-item collaborative ternet Computing, IEEE,2003. 7 (1) : 76-80. 被引量:1
  • 6Fang L, Kim H, LeFevre K, et al. A recommendation wizard for users of privacy social networking sites [C] //Proceedings of 17th ACM conference on Computer the and communications security. ACM, 2010:630-632. 被引量:1
  • 7罗辛,欧阳元新,熊璋,袁满.通过相似度支持度优化基于K近邻的协同过滤算法[J].计算机学报,2010,33(8):1437-1445. 被引量:126
  • 8Wu J, Xiong H, Chen J. COG: local decomposition for rare class analysis[J]. Data Mining and Knowledge Discovery, 2010, 20 (2): 191-220. 被引量:1
  • 9Troyanskaya O, Cantor M, Sherlock G, et al. Missing value estimation methods for DNA microarrays[J].Bioinformatics, 2001, 17(6): 520-525. 被引量:1
  • 10邓爱林,朱扬勇,施伯乐.基于项目评分预测的协同过滤推荐算法[J].软件学报,2003,14(9):1621-1628. 被引量:559

二级参考文献23

  • 1Sarwar B,Karypis G,Konstan J,Reidl J.Item-based collaborative filtering recommendation algorithms//Proceedings of the 10th International Conference on World Wide Web.Hong Kong,China,2001:285-295. 被引量:1
  • 2Deshpande M,Karypis G.Item-based top-n recommendation algorithms.ACM Transactions on Information Systems,2004,22(1):143-177. 被引量:1
  • 3Bell R M,Koren Y.Improved neighborhood-based collaborative filtering//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.California,2007:7-14. 被引量:1
  • 4Koren Y.Factor in the Neighbors:Scalable and accurate collaborative filtering.ACM Transactions on Knowledge Discovery from Data,2009,4(1):1-24. 被引量:1
  • 5Kurucz M,Benczúr A A,Csalogny K.Methods for large scale SVD with missing values//KDD Cup Workshop at Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.California,2007:31-38. 被引量:1
  • 6Paterek A.Improving regularized singular value decomposition for collaborative filtering//KDD Cup Workshop at Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.California,2007:39-42. 被引量:1
  • 7Takcs G,Pilszy I,Németh B,Tikky D.Investigation of various matrix factorization methods for large recommender systems//Proceedings of the 2nd KDD Workshop on Large-Scale Recommender Systems and the Netflix Prize Competition,2008:1-8. 被引量:1
  • 8Herlocker J,Konstan J,Riedl J.An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms.Information Retrieval,2002,5(4):287-310. 被引量:1
  • 9Herlocker J,Konstan J,Terveen L,Riedl J.Evaluating collaborative filtering recommender systems.ACM Transactions on Information Systems,2004,22(1):5-53. 被引量:1
  • 10Adomavicius G,Tuzhilin A.Toward the next generation of recommender systems:A survey of the state-of-the-art and possible extensions.IEEE Transactions on Knowledge and Data Engineering,2005,17(6):734-749. 被引量:1

共引文献666

同被引文献14

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部