摘要
设C(I)表示所有从I=[0,1]到I的连续函数.对任意f∈C(I),令Gf={x,f(x)|x∈I}表示f的图像,G(I)={G}f|f∈C(I).赋予G(I)具有豪斯多夫度量d H,同时证明(G(I),d)H具有胞腔不相交性质.
Let C(I) denote all continuous maps from I=[0,1] to I.For every f ∈ C(I), let Gf={x,f(x)|x ∈ I} be the graphics of f.Let G(I) ={G}f| f ∈ C(I).This paper endows C(I) with Hausdorff metric dH,and shows that(G(I)),dHhas the disjoint cells property.
出处
《韩山师范学院学报》
2014年第6期30-35,共6页
Journal of Hanshan Normal University