期刊文献+

基于局部约束邻域嵌入的人脸画像-照片合成

Face sketch-photo synthesis based on locality-constrained neighbor embedding
下载PDF
导出
摘要 针对画像块和照片块在流形上的邻域关系并不能完全反映彼此内在数据结构的问题,提出一种基于局部约束邻域嵌入(LCNE)的画像-照片合成算法。首先,利用基于邻域嵌入(NE)的合成方法得到待合成照片或画像的初始估计;其次,根据待合成的照片块或画像块与训练集中的照片块或画像块的相似性来约束合成权值;然后,通过交替优化方法进行权值的确定和K-近邻的选择,并更新待合成目标块;最后,合并所有估计的照片块或画像块合成目标图像。与基于邻域嵌入的画像照片合成方法相比,所提方法合成图像的结构相似度提高0.050 3,脸识别准确率提高14%。实验结果表明,该方法解决了基于NE方法导致的邻域之间兼容性不强的问题,能大大减少合成图像上的噪声及变形。 The neighboring relationship of sketch patches and photo patches on the manifold cannot always reflect their intrinsic data structure. To resolve this problem, a Locality-Constrained Neighbor Embedding (LCNE) based face sketch-photo synthesis algorithm was proposed. The Neighbor Embedding (NE) based synthesis method was first applied to estimate initial sketches or photos. Then, the weight coefficients were constrained according to the similarity between the estimated sketch patches or photo patches and the training sketch patches or training photo patches. Subsequently, alternative optimization was deployed to determine the weight coefficients, select K candidate image patches and update the target synthesis patch. Finally, the synthesized image was generated by merging all the estimated sketch patches or photo patches. In the contrast experiments, the proposed method outperformed the NE based synthesis method by 0.0503 in terms of Structural SIMilarity (SSIM) index and by 14% in terms of face recognition accuracy. The experimental results illustrate that the proposed method resolves the problem of weak compatibility among neighbor patches in the NE based method and greatly alleviates the noises and deformations in the synthetic image.
出处 《计算机应用》 CSCD 北大核心 2015年第2期535-539,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(81160182 61201125)
关键词 人脸画像-照片合成 局部约束 邻域嵌入 流形学习 人脸识别 face sketch-photo synthesis local constraint Neighbor Embedding (NE) manifold learning facerecognition
  • 相关文献

参考文献27

  • 1TANG X, WANG X. Face sketch recognition [ J]. IEEE Transac- tions on Circuits and Systems for Video Technology, 2004, 14(1) : 50 - 57. 被引量:1
  • 2WANG N, TAO D, GAO X, et al. A comprehensive survey to face hallucination [ J]. International Journal of Computer Vision, 2014, 106(1): 9-30. 被引量:1
  • 3高新波,王楠楠.异质人脸图像合成[M]//机器学习及其应用.北京:清华大学出版社,2013:79-94. 被引量:1
  • 4WANG N, TAO D, GAO X, et al. Transductive face sketch-photo synthesis [ J]. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(9) : 1364 - 1376. 被引量:1
  • 5TANG X, WANG X. Face photo recognition using sketch [ C]// Proceedings of the 2002 IEEE International Conference on Image Processing. Piscataway: IEEE, 2002, 1:257-260. 被引量:1
  • 6TANG X, WANG X. Face sketch synthesis and recognition [ C]// Proceedings of the 9th IEEE International Conference on Computer Vision. Piscataway: IEEE, 2003, 1:687-694. 被引量:1
  • 7LI Y-H, SAVVIDES M, BHAGAVATULA V. Illumination tolerance face recognition using a novel face from sketch synthesis approach and advanced correlation filters [ C]// ICASSP 2006: Proceedings of the 2006 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2006:357-360. 被引量:1
  • 8LIU Q, TANG X, JIN H, et al. A nonlinear approach for face sketch synthesis and recognition [ C]//CVPR 2005: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Socie- ty, 2005, 1:1005 - 1010. 被引量:1
  • 9LIU W, TANG X, LIU J. Bayesian tensor inference for sketch- based face photo hallucination [ C]// IJCAI'07: Proceedings of the 20th International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann, 2007:2141 - 2146. 被引量:1
  • 10CHANG M, ZHOU L, HAN Y, et al. Face sketch synthesis via sparse representation [ C]// Proceedings of the 20th International Conference on Pattern Recognition. Piscataway: IEEE, 2010: 2146 -2149. 被引量:1

二级参考文献11

  • 1狄红卫,刘显峰.基于结构相似度的图像融合质量评价[J].光子学报,2006,35(5):766-771. 被引量:65
  • 2QU GUIHONG, ZHANG DALI, YAN PINGFAN. Information meas- ure for performance of image fusion [ J]. Electronics Letters, 2002, 38 (7):313 -315. 被引量:1
  • 3WANG ZHOU, BOVIK A C. A universal image quality index [ J]. IEEE Signal Processing Letters, 2002, 9(3):81 -84. 被引量:1
  • 4PIELLA G. New quality measures for image fusion[ C]// The 7th International Conference on Information Fusion. Stockholm: [ s. n. ], 2004:542 -546. 被引量:1
  • 5YANG CUI, ZHANG JIANQI, WANG XIAORUI, et al . A novel similarity based quality metric for imase fusion [ J] . Information Fu- sion, 2008, 9(2): 156 - 160. 被引量:1
  • 6JIAN MUWEI, MA PING, JIA JIANFENG. Perceptual quality met- ric for performance evaluation of image fusion[ C]//Second Interna- tional Symposium on Intelligent Information Technology and Security Informatics. Washington, DC: IEEE Computer Society, 2009:148 - 152. 被引量:1
  • 7CHEN HAO, VARSHNEY P K. A human perception inspired quali- ty metric for image fusion based on regional information [ J]. Infor- mation Fusion, 2007, 8(2) : 193 - 207. 被引量:1
  • 8LUO XIAOQING, WU XIAOJUN. New metric of image fusion based on region similarity [J]. Optical Engineering,2010,49(4) : 1 - 13. 被引量:1
  • 9GEMMA P. A general framework for muhiresolution image fusion: From pixels to regions [ J]. Information Fusion, 2003, 4(4):259 - 280. 被引量:1
  • 10ITTI L, KOCH C. Computational modeling of visual attention [ J]. Nature Review Neuroscience, 2001, 2(3) : 194 -230. 被引量:1

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部