期刊文献+

基于改进MCKD方法的声发射信号降噪 被引量:6

De-noising Method of Acoustic Emission Signal Based on Improved MCKD
原文传递
导出
摘要 针对强噪声环境中故障声发射信号提取的难题,在最小熵解卷积MED(Minimum Entropy Deconvolution)和最大峭度解卷积MCKD(Maximum correlated kurtosis deconvolution)的基础上,提出一种基于双向循环重构滤波准则的改进MCKD降噪方法。双向重构准则能够充分利用数据中的冲击成分,具有较强的抗冲击幅值变化干扰能力,改进MCKD方法通过滤波器迭代提取有用信号达到降噪目的。通过仿真信号和轴承故障声发射实验信号的研究表明:改进MCKD方法能有效提取原始信号中的有用故障信息,其降噪性能优于MED方法和MCKD方法。 Aiming at the problem of extracting a useful acoustic emission signal of fault, an improved MCKD method was presented by two-way loop restructuring rule based on MED and MCKD method. The two-way loop restructuring rule fully used impact component of original data, and has strong anti-amplitude changing capacity. The improved MCKD method obtained de-noising signal by iterative updating filter coefficients. The result of simulation and testing data showed that the improved MCKD can effectively extract the useful fault, and the noise reduction performance was better than MED and MCKD method.
出处 《机械设计与研究》 CSCD 北大核心 2015年第1期70-73,77,共5页 Machine Design And Research
基金 国家自然科学基金资助项目(50775219) 军队科研资助项目:[2011]107
关键词 声发射 循环重构 最小熵解卷积 降噪 故障诊断 acoustic emission loop restructuring minimum entropy deconvolution denoising fault diagnosis
  • 相关文献

参考文献11

  • 1DongSik Gu, JaeGu Kim, YoungSu An, et al. Detection of faultsin gearboxes using acoustic emission signal [ J ]. Journal of Mechan-ical Science and Technology ,2011,25(5) ; 1279 - 1286. 被引量:1
  • 2D Mba, Raj B K N Rao. Development of acoustic emission technol-ogy for condition monitoring and diagnosis of rotating machines ;bearings,pumps,gearboxes,engines and rotating structures[ J].The Shock and Vibration Digest,2006,38( 1 ) : 3-16. 被引量:1
  • 3B Eftekhamejad, M R Carrasco, B Chamley, et al. The applica-tion of spectral kurtosis on Acoustic Emission and vibrations from adefective bearing [ J ]. Mechaniacl Systems arid Signal Processing,2011,25(6) :266 -284. 被引量:1
  • 4R A Wiggins. Minimum Entropy Deconvolution [ J ]. Geoexplora-tion, 1978 ,9( 16) :21 -35. 被引量:1
  • 5王宏超,陈进,董广明.基于最小熵解卷积与稀疏分解的滚动轴承微弱故障特征提取[J].机械工程学报,2013,49(1):88-94. 被引量:141
  • 6H Endo, R Randall. Enhancement of autoregressive model basedgear tooth fault detection technique by the use of minimum entropydeconvolution filter [ J ]. Journal of Mechanical Science and Tech-nology ,2007 ,21(2) -.906-919. 被引量:1
  • 7N Sawalhi,R Randall, H Endo. The enhancement of fault detec-tion and diagnosis in rolling element bearings using minimum entro-py deconvolution combined with spectral kurtosis [ J ]. Journal ofMechanical Science and Technology ,2007 ,21 (2) :2616 -2633. 被引量:1
  • 8Geoff L McDonald,Qing Zhao,Ming J Zuo. Maximum correlatedkurtosis deconvolution and application on gear tooth chip fault de-tection [ J] . Mechaniacl Systems and Signal Processing, 2012 ,33(7):237-255. 被引量:1
  • 9Taehee Kim, Kang-Keum Lee. Estimation of relative recharge se-quence to groundwater with minimum entropy deconvolution [ J ] .Journal of Hydrology,2005 ,311 :8 - 19. 被引量:1
  • 10T Barszcz, A Jab丨丨 on,ski. A novel method for the optimal band se-lection for vibration signal demodulation and comparison with theKurtogram [ J ]. Mechanical Systems and Signal Processing, 2011 ,25(6) :134 -451. 被引量:1

二级参考文献22

  • 1杨炯明,秦树人,季忠.旋转机械阶比分析技术中阶比采样实现方式的研究[J].中国机械工程,2005,16(3):249-253. 被引量:38
  • 2陈进.机械设备振动监测与故障诊断[M],上海:上海交通大学出版社,1997:98-102. 被引量:3
  • 3Sawalhi N, Randall R B, Endo H. The enhancement of fault detection and diagnosis in rolling element bearings using minimum entropy deconvolution combined with spectral kurtosis [ J ]. Mechanical Systems and Signal Processing, 2007, 21 (6):2616 - 2633. 被引量:1
  • 4Antoni J, Randall R B. The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines [J]. Mechanical Systems and Signal Processing, 2006, 20(2) : 308 -331. 被引量:1
  • 5Antoni J. Fast computation of the kurtogram for the detection of transient faults [ J ]. Mechanical Systems and Signal Processing, 2006, 21 ( 1 ) : 108 - 124. 被引量:1
  • 6Fyfe K R, Munck E D S. Analysis of computed order tracking [J]. Mechanical Systems and Signal Processing, 1997, 13 (4) : 667 -641. 被引量:1
  • 7Sawalhi N, Randall R B. Simulating gear and bearing interactions in the presence of faults part I . the combined gear bearing dynamic model and the simulation of localised bearing faults [ J ]. Mechanical Systems and Signal Processing, 2008, 22(8) : 1924 - 1951. 被引量:1
  • 8MING Y, CHEN J, DONG G M. Weak fault featureextraction of rolling bearing based on cyclic Wiener filterand envelope spectrum[J]. Mechanical System and SignalProcessing,2011, 25: 1773-1785. 被引量:1
  • 9QIU H, JAYL, LIN J? et al. Wavelet filter-based weaksignature detection method and its application on rollingbearing element bearing prognosdcs[J]. Journal of SoundandWjration, 2006,289: 1066-1090. 被引量:1
  • 10BIN G F, GAO J J, LI X J. Early fault diagnosis ofrotating machinery based on wavelet packets-empiricalmode decomposition feature extraction and neuralnetwoik[J]. Mechanical System and Signal Processing,2012,27: 696-711. 被引量:1

共引文献158

同被引文献45

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部