期刊文献+

不同碳源对产甲烷生物阴极性能的影响 被引量:6

Effect of Carbon Sources on the Performance of Methane-producing Biocathodes
下载PDF
导出
摘要 以'H'型电池为主体装置,考察和比较了有机和无机碳源对产甲烷生物阴极启动期和稳定运行期性能的影响.结果表明,有机碳源可以加速产甲烷生物阴极的形成,并使其在稳定运行期维持较高的运行性能;有机碳源条件下所形成的产甲烷生物阴极具有较好的电化学活性,当阴极电势为-0.75 V(vs.SHE)时,其电流密度可达(2.34±0.15)A/m2;通过投加有机碳源,可以实现CO2(或HCO-3)的原位供给,与无机碳源直接供给方式相比,可在一定程度上缓解气液传质限制,提高微生物的生长速率,最终使产甲烷生物阴极表面生物量是无机碳源培养下的4倍多.从微生物分析角度解释了有机碳源提高产甲烷生物阴极性能的原因. Effects of organic carbon source( OCS) and inorganic carbon source( ICS) on the performance of methane-producing biocathodes were studied. The current density, methanation, polarization curves and bio-mass attached were investigated during both start-up and stable operating periods. The results show that OCS not only accelerated formation of the methane-producing biocathode, but improved its operating performance. As for the polarization tests, the current density of the OCS-associated biocathode could reach (2.34±0.15) A/m2 with the cathode potential poised at -0.75 V( vs. SHE) , higher than that of the ICS-associated bioca-thode. Compared to ICS addition, OCS addition could achieve in-situ supply of carbon dioxide( CO2 ) , which would alleviate gas-liquid transfer limitations and promote microorganisms' growth. In this case, the biomass attached on OCS-associated biocathode was more than 4 times as much as that on ICS-associated biocathode, further elucidating the high-performance of OCS-associated methane-producing biocathodes.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2015年第2期344-348,共5页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:51278271) 国家水体污染控制与治理科技重大专项项目(批准号:2012ZX07205-002)资助~~
关键词 有机碳源 无机碳源 产甲烷生物阴极 电流密度 生物量 Methane-producing biocathode Current density Biomass
  • 相关文献

参考文献17

  • 1Lovley D. R., Nevin K. P., Curr. Opin. Biotechnol., 2013, 24(3), 385-390. 被引量:1
  • 2Williams J. H., Debenedictis A., Ghanadan R., Mahone A., Moore J., Morrow W. R., Price S., Torn M. S., Science, 2012, 335(6064), 53-59. 被引量:1
  • 3Marshall C. W., Ross D. E., Fichot E. B., Norman R. S., May H. D., Appl. Environ. Microbiol., 2012, 78(23), 8412-8420. 被引量:1
  • 4Van Eerten-Jansen M., Ter Heijne A., Buisman C. J. N., Hamelers H. V. M., Int. J. Energ. Res., 2012, 36(6), 809-819. 被引量:1
  • 5Cheng S., Xing D., Call D. F., Logan B.E., Environ. Sci. Technol., 2009, 43(10), 3953-3958. 被引量:1
  • 6张金娜,赵庆良,尤世界,张国栋.生物阴极微生物燃料电池不同阴极材料产电特性[J].高等学校化学学报,2010,31(1):162-166. 被引量:16
  • 7Liu R. R., Wang D. J., Leng J., Chem. Res. Chinese Universities, 2013, 29(4), 747-750. 被引量:1
  • 8Jeremiasse A. W., Hamelers H. V., Buisman C. J., Bioelectrochemistry, 2010, 78(1), 39-43. 被引量:1
  • 9Villano M., Aulenta F., Ciucci C., Ferri T., Giuliano A., Majone M., Bioresour. Technol., 2010, 101(9), 3085-3090. 被引量:1
  • 10Kleerebezem R., van Loosdrecht M. C., Crit. Rev. Environ. Sci. Technol., 2010, 40(1), 1-54. 被引量:1

二级参考文献17

  • 1邹勇进,孙立贤,徐芬,杨黎妮.以新亚甲基蓝为电子媒介体的大肠杆菌微生物燃料电池的研究[J].高等学校化学学报,2007,28(3):510-513. 被引量:17
  • 2Bond D. R. , Holmes D. E. , Tender L. M. , et al.. Science[ J], 2002, 295:483-485. 被引量:1
  • 3Allen R. M. , Bennetto H. P.. Appl. Biochem. Biotechnol. [J] , 1993, 39:27-40. 被引量:1
  • 4Liu H. , Logan B. E.. Environ. Sci. Technol. [J], 2004, 38:4040-4046. 被引量:1
  • 5Schroler U. , Niessen J. , Scholz F.. Angew. Chem. Int. Ed. [J], 2003, 42:2880-2883. 被引量:1
  • 6Rabaey K. , Clauwaert P. , Aelterman P. , et al.. Environ. Sci. Technol. [J] , 2005, 39:8077-8082. 被引量:1
  • 7You S. J. , Zhao Q. L. , Zhang J. N., et al.. J. Power Sources[J], 2006, 162:1409-1415. 被引量:1
  • 8Oh S. E. , Min B. , Logan B. E.. Environ. Sci. Technol. [J], 2004, 38:4900-4904. 被引量:1
  • 9Zou Y. J. , Xiang C. L, Yang L. N. , et al.. Int. J. Hydrogen Energ. [ J ] , 2008, 33 : 4856-4862. 被引量:1
  • 10Rabaey K. , Clauwaert P. , Aelterman P. , et al.. Environ. Sci. Technol. [ J ], 2005, 39:8077-8082. 被引量:1

共引文献15

同被引文献39

  • 1吕琛,袁海荣,王奎升,朱保宁,刘研萍,李秀金.果蔬垃圾与餐厨垃圾混合厌氧消化产气性能[J].农业工程学报,2011,27(S1):91-95. 被引量:38
  • 2赵杰红,张波,蔡伟民.厌氧消化系统中丙酸积累及控制研究进展[J].中国给水排水,2005,21(3):25-27. 被引量:37
  • 3孙寓姣,左剑恶,李建平,鲁颐琼.厌氧颗粒污泥中微生物种群变化的分子生物学解析[J].中国环境科学,2006,26(2):183-187. 被引量:29
  • 4Xu H, Wang K, Holmes D E. Bioelectrochemical removal of carbon dioxide (CO2): An innovative method for biogas upgrading [J]. Bioresource technology, 2014,173:392-3928. 被引量:1
  • 5Ryckebosch E, Drouillon M, Vervaeren H. Techniques for transformation of biogas to biomethane [J]. Biomass and Bioenergy, 2011,35(5):1633-1645. 被引量:1
  • 6Xu H, Gong S, Sun Y, et al. High-rate hydrogenotrophic methanogenesis for biogas upgrading: the role of anaerobic granules [J]. Environmental Technology, 2014,36(4):529-537. 被引量:1
  • 7Luo G, Johansson S, Boe K, et al. Simultaneous hydrogen utilization and in situ biogas upgrading in an anaerobic reactor [J]. Biotechnology and bioengineering, 2012,109(4):1088-1094. 被引量:1
  • 8Muller N, Worm P, Schink B, et al. Syntrophic butyrate and propionate oxidation processes: from genomes to reaction mechanisms [J]. Environmental microbiology reports, 2010,2(4): 489-499. 被引量:1
  • 9Fukuzaki S, Nishio N, Shobayashi M, et al. Inhibition of the Fermentation of Propionate to Methane by Hydrogen, Acetate, and Propionate [J]. Applied and Environmental Microbiology, 1990,56(3):719-723. 被引量:1
  • 10Macleod F A, Guiot S R, Costerton J W. Layered structure of bacterial aggregates produced in an upflow anaerobic sludge bed and filter reactor [J]. Applied and Environmental Microbiology, 1990,56(6):1598-1607. 被引量:1

引证文献6

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部