期刊文献+

基于混沌粒子群算法的多目标调度优化研究 被引量:5

Research on multi-objective scheduling optimization based on Chaotic Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 针对当前车间调度多目标优化研究存在收敛速度慢、精度低的问题,提出了混沌多目标粒子群优化算法。在算法中,设计了一种新的叠加Logistic扰动的Tent混沌映射算子,通过该算子周期性地更新种群以保证种群的多样性;对收缩粒子群算法进行了扩展使其能够快速收敛到Pareto前沿。通过标准测试问题与实际应用对所提方法进行了验证,实验结果显示混沌多目标粒子群优化算法无论在收敛速度还是在优化精度上都优于其它典型多目标进化算法。 Since the current job shop scheduling multi-objective optimization has the drawbacks of slow conver-gence speed and low accuracy, it proposes a chaotic multi-objective particle swarm optimization algorithm. In the algo-rithm, designed the Tent chaotic mapping a new stack Logistic disturbance, the operator periodically update population in order to ensure the diversity of population;on the contraction of particle swarm algorithm is extended so that it can rapidly converge to the Pareto front. The standard test problems and practical application to verify the proposed meth-od, experimental results show that the chaotic multi-objective particle swarm optimization algorithm both in conver-gence speed and optimization accuracy is better than other typical multi-objective evolutionary algorithm.
出处 《激光杂志》 CAS 北大核心 2015年第1期122-127,共6页 Laser Journal
基金 宁波市自然科学基金2012A610071
关键词 车间调度 混沌算子 种群多样性 多目标优化 粒子群算法 scheduling chaos operator population diversity multi-objective optimization particle swarm algorithm
  • 相关文献

参考文献19

  • 1汪双喜,张超勇,刘琼,饶运清,尹勇.不同再调度周期下的柔性作业车间动态调度[J].计算机集成制造系统,2014,20(10):2470-2478. 被引量:24
  • 2Low Chinyao, Hsu Chih-Ming,Huang Kai-I. Benefits oflot splitting in job-shop scheduling [ J]. International Jour-nal of Advanced Manufacturing Technology,2004,24 (9-10) :773-780. 被引量:1
  • 3Jeong Han-11, Park Jinwoo,Leachman R C. Batch splittingmethod for a job shop scheduling problem in an MRP envi-ronment [J]. International Journal of Production Research,1999,37(15) : 3583-3598. 被引量:1
  • 4Chan Felix T S, Wong T C, Chan PLY. Equal size lotstreaming to job-shop scheduling problem using genetic al-gorithms [ C ]. //Proceedings of the 2004 IEEE Interna-tional Symposium on Intelligent Control. Washington, D.C.,USA:IEEE Computer Society, 2004,472-476. 被引量:1
  • 5Chan Felix T S,Wong T C,Chan L Y. Lot splitting underdifferent job shop conditions [ C]. Proceedings of the 2007IEEE Congress on Evolutionary Computation. Washington,D.C.,USA: IEEE Computer Society, 2008,4722-4728. 被引量:1
  • 6李运霞,杜娟,孙王路.基于多种群遗传算法的路径柔性车间调度问题[J].组合机床与自动化加工技术,2014(3):152-155. 被引量:13
  • 7Zhang Y,Gong D, Ding Z,A bare-bones multi-objectiveparticle swarm optimization algorithm for environmental/e-conomic dispatch [ J ] , Information Science, 2012,192 :213-227. 被引量:1
  • 8Hamidreza Eskandari, Christopher D. Geiger. A fast Paretogenetic algorithm approach for solving expensive multiobjec-tive optimization problems [ J ]. Journal of Heuristics,2008, 14(3):203-241. 被引量:1
  • 9Deb K, Amrit P,Sameer A, Meyrivan T. A Fast and Elit-ist Multi-objective Genetic Algorithm; NSGA-II[ J]. IEEETrans. Evol. Comp.,2002, 6(2) ; 182-197. 被引量:1
  • 10ZitzlerE, Thiele L. Multiobjective evolutionary algorithms:a comparative case study and the strength pareto approach[J]. IEEE Trans. Evol. Comp.,1999, 3(1) : 257-271. 被引量:1

二级参考文献57

共引文献48

同被引文献63

引证文献5

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部