期刊文献+

并行混沌遗传算法在量子级联激光器模型参数优化中的应用 被引量:1

Parallel Chaotic Genetic Algorithm Assisted Performance Optimization for Quantum Cascade Laser
下载PDF
导出
摘要 量子级联激光器具备发射线宽窄,光功率密度高,单色性好与准直度高等特点。随着量子级联激光器技术的日趋成熟,其光谱范围不但覆盖大气透射的三个重要红外窗口,而且已经延伸至太赫兹频段,在化学和生物传感、成像和特殊通信等领域有重要的应用。本文首先从量子级联激光器基本结构和能级模型出发,通过构建量子力学模型实现对量子级联激光器物理特性的仿真,在此基础上引入了并行混沌遗传算法对量子级联激光器有源区设计结构中的关键参数进行了寻优。本文还测试并给出了并行计算的开销时间、加速比性能与收敛性。 Quantum cascade lasers have very narrow emission line width, high optical power density, good mono- chromaticity and high collimation. With the quantum cascade laser manufacturing technology matures, it will not only cover the spectral range of three important infrared atmospheric transmission windows, and has been extended to the terahertz band. Quantum cascade lasers have important applications in chemical and biological sensing, imaging, spe- cial communications and other fields. The present paper gives a broad review of the basic structure of QCL and energy level model, then by constructing quantum mechanical model to achieve the simulation of QCL' s physical characteris- tics. Furthermore, the parallel chaotic genetic algorithm was adopted to optimize the key parameters of the QCL active region structure. This paper also discusses how to implement parallel code-refactoring in a complex physical model, and tested the overhead time of parallel computing, parallel speedup performance and convergence of the parallel cha- otic genetic algorithm.
出处 《激光杂志》 北大核心 2016年第3期12-15,共4页 Laser Journal
基金 中国国家科技支撑计划“煤矿突水、火灾等重大事故防治关键技术与装备研发”重大课题,煤矿用红外CO检测仪(传感器)研发(项目编号:2013BAK06B04)
关键词 量子级联激光器物理建模 并行混沌遗传算法 有源区结构参数优化 并行算法性能分析 quantum cascade laser physical modelling parallel chaotic genetic algorithm parameters optimization of active region structure parallel algorithm performance analyse
  • 相关文献

参考文献15

二级参考文献99

共引文献96

同被引文献13

  • 1E.N.洛伦兹.混沌的本质[M].北京:气象出版社,1997. 被引量:8
  • 2Fauzi Mohd Johar. A review of Genetic Algorithms and Parallel Genetic Algorithms on Graphics Processing Unit (GPU) [ C ]. IEEE International Conference on Control System, Computing and Engineering (ICCSCE) , 2013, 29 : 264-269. 被引量:1
  • 3Tomas Potuzak. Sparsely synchronized parallel genetic al- gorithm for road traffic network division[ C ]. 8'h Interna- tional Conference on Human System Interaction (HSI) , 2015 : 129-134. 被引量:1
  • 4Luea, A., Ilyas, A., Vlad, A. Generating random bi- nary sequences using tent map [ C ]. 10th International Symposium on Signals, Circuits and Systems, 2011, pp. 1-4. 被引量:1
  • 5Javad Mohammadi, Kamal Mirzaie, Vail Derhami. Paral- lel genetic algorithm based on GPU for solving quadratic assignment problem[ C]. 2nd International Conference on Knowledge-Based Engineering and Innovation (KBEI), 2015, pp. 569-572. 被引量:1
  • 6Buhua Chen, Bo Chen, Hongwei Liu, Xuefeng Zhang. A Fast Parallel Genetic Algorithm for Graph Coloring Prob- lem Based on CUDA [ C ]. International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC) , 2015 : 145-148. 被引量:1
  • 7Xin-Yuan Zhang, Yue-jiao Gong, Zhihui Zhan, Wei- Neng Chen, Yun Li, Jun ZHANG. Kuhn-Munkres Paral- lel Genetic Algorithm for the Set Cover Problem and Its Application to Large-Scale Wireless Sensor Networks[ J]. IEEE Transactions on Evolutionary Computation, 2016:1. 被引量:1
  • 8Robert C. Green, Lingfeng Wang, Mansoor Alam, Chanan Singh. Intelligent and parallel state space pruning for power system reliability analysis using MPI on a mul- ticore platform[ C]. IEEE PES on Innovative Smart Grid Technologies (ISGT) , 2011 : 1-8. 被引量:1
  • 9Elias Hadjikyriacou, Nikolaos Samaras. An Experimental Evaluation of a Parallel Genetic AlgorithmUsing MPI [ C]. 13'h Panhellenic Conference on PCI 09, 2009: 75- 79. 被引量:1
  • 10Zhurong Wang. A Parallel Genetic Algorithm for Solving the Probabilistic Minimum Spanning Tree Problem [ C ]. 9th Computational Intelligence and Security (CIS) , 2013 : 61-65. 被引量:1

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部