期刊文献+

一类统一非线性特性的Hammerstein模型辨识方法研究 被引量:5

Description of Unified Nonlinear Characteristics Hammerstein Model and Its Identification Method Research
下载PDF
导出
摘要 非线性系统广泛存在于工业过程,目前非线性系统的描述方法较多、较分散,其待辨识的模型特性获取也较复杂。针对单输入单输出Hammerstein动态模型,研究了一种可以统一描述死区、饱和、迟滞、加载等4种典型不连续非线性特性的结构,通过选择不同的结构参数可以得到9种非线性特性,结合关键变量分离原则对这些特性进行处理。应用基本粒子群优化算法和一种改进的粒子群优化算法对含有统一非线性特性的Hammerstein ARMA模型进行辨识,通过仿真得到包含9种不同非线性特性的Hammerstein模型的参数估计,其结果表明统一非线性结构的描述及所应用的辨识方法具有良好的效果,说明了其有效性。 Nonlinear systems widely exist in industry process. However, the descriptions are various and decentralized. The characteristics for identification are difficult to obtain. For a single-input and single-output nonlinear dynamic Hammerstein model, a uniform description was introduced, which could describe four typical discontinuous nonlinear characteristics such as dead-zone, saturation, hysteresis and preload. Through different parameters choice, nine different nonlinearities could be obtained. Key-term separation principle was used to process the characteristics. The basic Particle Swarm Optimization (PSO) and a modified PSO method were applied to identify the Hammerstein ARMA model containing the unified nonlinear characteristics. Though simulation, parameters of this Hammerstein model with 9 different nonlinear characteristics were estimated. The simulation results show the unified nonlinear characteristics description and the identification method applied are effective.
出处 《系统仿真学报》 CAS CSCD 北大核心 2014年第12期2887-2891,共5页 Journal of System Simulation
基金 国家自然科学基金(61273132)
关键词 系统辨识 统一非线性特性 HAMMERSTEIN模型 粒子群算法 system identification unified nonlinear characteristics Hammerstein model PSO
  • 相关文献

参考文献16

二级参考文献109

共引文献140

同被引文献32

  • 1王钰,郭其一,李维刚.基于改进BP神经网络的预测模型及其应用[J].计算机测量与控制,2005,13(1):39-42. 被引量:87
  • 2Talaie S, Shoorehdeli M A, Shahmohanadi L. Nonlinear system identification of Hammerstein Wiener model using AWPSO [C]// 2014 Iranian Conference on Intelligent Systems. New York, USA: IEEE, 2014: 1-4. 被引量:1
  • 3Angelov P P. Fuzzily Connected Multimodel Systems Evolving Autonomously From Data Streams [J]. IEEE Trans. Syst., Man, Cybem. B, Cybern. (S1083-4427), 2011, 41(4): 898-910. 被引量:1
  • 4Christoph H, Stefan J. Local model network identification for online engine modelling [J]. Information Sciences (S0020-0255), 2013, 220(20): 210-225. 被引量:1
  • 5Alexandre X, Carvalho, Martin A. Tanner. Mixtures-of-Experts of Autoregressive Time Series: Asymptotic Normality and Model Specification [J]. IEEE Transactions on Neural Networs (S1045-9227), 2005, 16(1): 39-56. 被引量:1
  • 6Yuksel S E, Wilson J N, Gader P D. Twenty Years of Mixture of Experts [J]. IEEE Transactions on Neural Networks and Learning Systems (S1045-9227), 2012, 23(8): 1177-1193. 被引量:1
  • 7Angelov P P, Filev D P. An approach to online identification of Takagi-Sugeno fuzzy models [J]. IEEE Trans. Syst., Man, Cybem. (S1083-4427), 2004, 34(1): 484-498. 被引量:1
  • 8Yasuda M. Entropy based annealing approach to fuzzy c-means clustering and its fractal interpolation [C]//2012 9th International Conference on Fuzzy Systems and Knowledge Discovery. New York, USA: IEEE, 2012: 560-564. 被引量:1
  • 9范伟,丁锋.Hammerstein非线性系统参数估计分离的三种方法[J].科学技术与工程,2008,8(6):1586-1589. 被引量:10
  • 10潘天红,薛振框,李少远.基于减法聚类的多模型在线辨识算法[J].自动化学报,2009,35(2):220-224. 被引量:21

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部