期刊文献+

基于距离度量学习的集成谱聚类 被引量:3

Integrated Spectral Clustering Based on Distance Metric Learning
下载PDF
导出
摘要 无监督学习聚类算法的性能依赖于用户在输入数据集上指定的距离度量,该距离度量直接影响数据样本之间的相似性计算,因此,不同的距离度量往往对数据集的聚类结果具有重要的影响。针对谱聚类算法中距离度量的选取问题,提出一种基于边信息距离度量学习的谱聚类算法。该算法利用数据集本身蕴涵的边信息,即在数据集中抽样产生的若干数据样本之间是否具有相似性的信息,进行距离度量学习,将学习所得的距离度量准则应用于谱聚类算法的相似度计算函数,并据此构造相似度矩阵。通过在UCI标准数据集上的实验进行分析,结果表明,与标准谱聚类算法相比,该算法的预测精度得到明显提高。 The performance of the unsupervised learning clustering algorithm is critically dependent on the distance metric being given by a user over the inputs of the data set. The calculation of the similarity between the data samples lies on the specified metric,therefore,the distance metric has a significant influence to the results of the clustering algorithm.Aiming at the problem of the selection of the distance metric for the spectral clustering algorithm,a spectral clustering algorithm based on distance metric learning with side-information is presented. The algorithm learns a distance metric with the side-information. The similarity between the data samples is chosen randomly from the data set,and is applied to the similarity function of spectral clustering algorithm. It structures the similarity matrix of the algorithm. The effectiveness of the algorithm is verified on real standard data sets on UCI,and experimental results show that compared with the standard spectral clustering algorithms,the prediction accuracy of the proposed algorithm is improved significantly.
出处 《计算机工程》 CAS CSCD 北大核心 2015年第1期207-210,244,共5页 Computer Engineering
基金 山西省软科学基金资助项目(2009041052-03)
关键词 数据挖掘 边信息 相似度矩阵 距离度量学习 谱聚类 UCI数据集 data mining side-information similarity matrix distance metric learning spectral clustering UCI data set
  • 相关文献

参考文献12

二级参考文献48

  • 1李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 2Raghu Krishnapuram,Keller J M.A possibilistic approach to clustering[J].IEEE Transactions on Fuzzy System,1993,1(2):98-110. 被引量:1
  • 3Bezdek J C.Pattern recognition with fuzzy objective function algorithm[M].New York:New York Plenum Press,1981. 被引量:1
  • 4Dombi J.Membership function as an evaluation[J].Fuzzy Sets and Systems,1990,35(1):1-21. 被引量:1
  • 5Popescu I,Bertsimas D.Optimal inequalities in probability theory:A convex optimization approach[J].SIAM Journal on Optimization,2001,15(3):780-804. 被引量:1
  • 6Gert R G L,Laurent E G,Chiranjib Bhattacharyya,et al.A robust minimax approach to classification[J].Journal of Machine Learning Research,2002(3):555-582. 被引量:1
  • 7Huang Kaizhu,Yang Haiqin,King Irwin,et al.The minimum error minimax probability machine[J].Journal of Machine Learning Research,2004(5):1253-1286. 被引量:1
  • 8Jain A, Murty M, Flynn P. Data clustering.. A Review[J]. ACM Computing Surveys, 1999,31 (3) : 264-323. 被引量:1
  • 9Fiedler M. Algebraic connectivity of graphs. Czech, Math. J. , 1973,23: 298-305. 被引量:1
  • 10Malik J,Belongie S,Leung T, et al. Contour and texture analysis for image segmentation In Perceptual Organization for Artificial Vision Systems. Kluwer, 2000. 被引量:1

共引文献1552

同被引文献20

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部