期刊文献+

基于共享近邻的自适应谱聚类 被引量:15

Adaptive Spectral Clustering Based on Shared Nearest Neighbors
下载PDF
导出
摘要 谱聚类是一种极具竞争力的聚类算法.相似度定义对谱聚类算法的性能有至关重要的影响.本文用两点的共享近邻数目表征局部密度,从而获知隐含的簇结构信息.将这一信息与自调节的高斯核函数结合,提出了基于共享近邻的自适应相似度及相应的谱聚类算法.它满足聚类假设的要求,具有局部密度的自适应性,能有效识别数据点之间的内在联系.典型人工和真实数据集上的实验结果证明了算法的有效性. Spectral clustering has become one of the most popular modem clustering algorithms in recent years. Similarity measurement is crucial to the performance of spectral clustering. Through exploiting the information about local density embedded in the shared nearest neighbors, a novel similarity measure and its corresponding spectral clustering, namely adaptive spectral clustering based on shared nearest neighbors is proposed in this paper. The proposed similarity measure satisfies the clustering assumption , and can obtain different values with respect to different local densities. So it can detect the intrinsic structure of the cluster embedded in the data sets more accurately. Experimental results on both synthetic and real data sets show that it's an effective and feasible way to improve the performance of spectral clustering.
出处 《小型微型计算机系统》 CSCD 北大核心 2011年第9期1876-1880,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60873180)资助
关键词 聚类 谱聚类 相似度度量 共享近邻 clustering spectral clustering similarity measure shared nearest neighbors
  • 相关文献

参考文献13

  • 1Bach F R, Jordan M I. Learning spectral clustering[ C]. In Pro- ceeding of NIPS, 2004. 被引量:1
  • 2Ozertem U, Erdogmus D, Jenssen R. Mean shift spectral clustering [ J ]. Pattern Recognition, 2008, 41 ( 6 ) : 1924-1938. 被引量:1
  • 3Zelnik-Manor L, Perona P. Serf-tuning spectral clustering[C]. In Proceeding of NIPS, 2005: 1601-1608. 被引量:1
  • 4Ng A, Jordan M I, Weiss Y. On spectral clustering: analysis and an algorithra[ C]. In Proceeding of NIPS, 2002: 849-856. 被引量:1
  • 5Yu S, Shi J. Multiclass spectral clustering [ C ]. In Proceeding of the Ninth IEEE International Conference on Computer Vision, 2003 : 313-319. 被引量:1
  • 6Shi J, Malik L Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8) : 888-905. 被引量:1
  • 7Meila M, Shi J. A random walks view of spectral segmentation [ C]. Tenth International Workshop on Artificial Intelligence and Statistics (AI-STAT), 2001. 被引量:1
  • 8Luxburg U. A tutorial on spectral clustering [ J]. Statistics and Computing, 2007,17(4) : 395-416. 被引量:1
  • 9Zhou D, Bousquet O, Lal T, et al. Learning with local and global consistency[C]. In Proceeding of NIPS, 2004: 321-328. 被引量:1
  • 10Jarvis R A, Patrick E A. Clustering using a similarity measure based on shared nearest neighbors[ J]. IEEE Transactions on Com- puters, 1973, 22(11): 1025-1034. 被引量:1

同被引文献69

引证文献15

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部