期刊文献+

基于复合免疫算法的入侵检测系统 被引量:6

Intrusion Detection System Based on Hybrid Immune Algorithm
下载PDF
导出
摘要 计算机安全系统与生物免疫系统具有很多的相似性,它们都需要在不断变化的环境中维持自身的稳定性。提出复合免疫算法,并应用到入侵检测系统中,以保护网络安全。针对经典的人工免疫算法在性能上存在的缺陷进行了改进,完善了其核心算法——否定选择算法,在否定选择算法中加入了分段技术和关键位,避免了恒定的匹配概率导致的匹配漏洞,降低了系统漏检率。并将遗传算法中的克隆选择算法和改进的否定选择算法结合为复合免疫算法,提高了检测器生成的动态性和多样性。最后,通过数学理论分析与仿真实验模拟,验证了改进算法的有效性和可行性,并且与其它经典算法进行了比较,结果证明,改进算法可以提高系统性能。 Computer security system and biological immune system have much comparability,so the artificial immune algorithm can be applied in intrusion detection system to solve various problems in the field of computer security.After studying the classical algorithm named negative selection algorithm,it was discovered that the matching algorithm would cause the examination black hole.A novel hybrid immune algorithm was proposed to solve the intrusion detection problem.The effectiveness and feasibility of the improved algorithm were verified.This paper partitioned the match string and set different coefficient for each section,thus to eliminate the problem that the r-continual position match algorithm has the constant match probability in the reverse choice algorithm,and to reduce the missing rate of intrusion detection system.This paper also combined the negative selection algorithm with the clonal selection algorithm.This will increase the reproduction,selection and intersection into the produce of detection.Thus the missing rate will be reduce& At last,we compared and analyzed the different parameters,including the section number,threshold value and rcontinual parameter.
出处 《计算机科学》 CSCD 北大核心 2014年第12期43-47,77,共6页 Computer Science
基金 国家自然科学基金(60905043 61073107 61173048) 上海市教育委员会科研创新项目 中央高校基本科研业务费资助
关键词 人工免疫算法 入侵检测 否定选择算法 生物免疫系统 克隆选择算法 Artificial immune Intrusion detection Negative selection algorithm Biological immune system Clonal selection algorithm
  • 相关文献

参考文献15

  • 1anonymity. NET NEWS: Policing the Computer Underworld [J]. Science, 1998,282(11) : 1223-1224. 被引量:1
  • 2E1-Khatib K. Impact of feature reduction on the efficiency of wireless intrusion detection systems[J]. IEEE Transactions on Parallel and Distributed Systems,2010,21(8) :1143-1149. 被引量:1
  • 3Wang Y, Fu W, AgrawaI D. Gaussian Versus Uniform Distribu- tion for Intrusion Detection in Wireless Sensor Networks[J]. IEEE Transactions on Parallel and Distributed Systems, 2013 (2)..342- 355. 被引量:1
  • 4方贤进,李龙澍,钱海.基于人工免疫的网络入侵检测中疫苗算子的作用研究[J].计算机科学,2010,37(1):239-242. 被引量:11
  • 5黄建忠,裴灿浩,谢长生,陈云亮,方允福.一种基于人工免疫技术的存储异常检测系统[J].计算机科学,2010,37(1):42-46. 被引量:4
  • 6Zhang Y, Wang L, Sun W, et al. Distributed intrusion detection system in a multi-layer network architecture of smart grids[J]. IEEE Transactions on Smart Grid, 2011,2(4) .. 796-808. 被引量:1
  • 7Ou C M. Host-based intrusion detection systems adapted from agent-based artificial immune systems [J]. Neurocomputing, 2012(7) : 78-86. 被引量:1
  • 8Wu S X,Banzhaf W. The use of computational intelligence in in- trusion detection systems: A review~JJ. Applied Soft Compu- ting, 2010,10(1) : 1-35. 被引量:1
  • 9Timmins J, Hone A, Stibor T, et al. Theoretical advances in arti- ficial immune systems[J]. Theoretical Computer Science, 2008, 403:11-32. 被引量:1
  • 10Yang J,Liu X J,Li T, et al. Distrubited agents model for intru- sion detection based on AIS [J]. Knowledge-Based Systems, 2009,22:115-119. 被引量:1

二级参考文献27

  • 1Pennington A G,Strunk J D, Griffin J L, et al. Storage-based Intrusion Detection: Watching storage activity for suspicious be havior[C]//Proeeedings of the 12th USENIX Security Symposium. 2003 : 137-151. 被引量:1
  • 2C-opal R K, Meher S K, A Rule-based Approach for Anomaly Detection in Subscriber Usage Patter[J]. Int. J. of Mathematical,Physical and Engineering Sciences,2007,1(3) : 171-174. 被引量:1
  • 3Qayyum A, Islam M H, Jamil M. Taxonomy of Statistical-based Anomaly Detection Techniques for Intrusion Detection[C]// Proceedings of the IEEE Conference on Emerging Technologies (ICET'05). 2005 : 270-276. 被引量:1
  • 4Durgin N A, Zhang P C. Profile-based Adaptive Anomaly Detection for Network Security[R]. SAND2005 7293. 2005. 被引量:1
  • 5Sekar R, Oupta A, et al. Specification-based anomaly detection : a new approach for detecting network intrusions[C]//9th ACM Conference on Computer and Comm. Security. 2002:265-274. 被引量:1
  • 6Du Y,Wang H Q,Pang Y G. A Hidden Markov models-based Anomaly Intrusion Detection Method[C]//Proceeding of WCICA'04.2004:4348-4351. 被引量:1
  • 7De Castro L N, Von Zuben F J. Artificial Immune Systems: Part I-Basic Theory and Applieations[R]. RT DCA 01/99. 1999:1-95. 被引量:1
  • 8Forrest S, Perelson A S, Allen L, et al. Self-nonself Discrimination in a Computer[C]//Proceedings of the 1994 IEEE Symposium on Security and Privacy. Los Alamitos, CA, 1994 : 202-212. 被引量:1
  • 9Kim J, Bentley P J. Towards an Artificial Immune System for Network Intrusion Detection:An Investigation of Dynamic Clonal Selection[C]//Proceeding of Congress on Evolutionary Computation. 2002 : 1015-1020. 被引量:1
  • 10Oda T,White T. Immunity from spam: An analysis of an Artificial Immune System for Junk Email Detection[C]//Proceeding of the 4th International Conference on Artificial Immune Systems (ICARIS'05). 2005 : 276-289. 被引量:1

共引文献13

同被引文献49

引证文献6

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部