期刊文献+

一种基于图像滤波的加权FCM图像分割算法 被引量:1

A kind of weighted FCM image segmentation algorithm based on image filtering
下载PDF
导出
摘要 针对模糊C均值(FCM)图像分割算法受初始值影响较大以及对噪声的抑制作用较差的问题,提出一种基于图像滤波的加权FCM图像分割算法.该算法采用快速FCM算法进行初分割,降低了初始值的影响,同时引入自适应中值滤波器,并与加权FCM算法相结合进行迭代滤波分割,不仅能很好地抑制噪声的影响而且能使分割更精确.利用该算法分别对人工合成的和真实的含噪图像进行分割实验,实验结果表明:本文算法对含噪图像有很好的分割结果. In view of the fuzzy c-means ( FCM) image segmentation algorithm is greatly influenced by the initial value of the poor and the inhibitory effect of noise, put forward a kind of weighted FCM image segmentation algorithm based on image filtering.At the beginning of the algorithm with fast FCM algorithm segmentation, to reduce the influence of the initial value, at the same time the adaptive median filter is introduced, and combined with weighted FCM algorithm segmentation, iterative filtering the effects of not only well restrain noise but also can make the segmentation more accurate.Respectively using the algorithm with noise of synthetic and real image segmentation experiments, the experimental results show that this algorithm for noise image has good segmentation results.
作者 宋娈娈
出处 《商丘师范学院学报》 CAS 2014年第12期10-14,共5页 Journal of Shangqiu Normal University
基金 国家自然科学基金资助项目(61171179 61227003 61301259) 山西省自然科学基金资助项目(2012021011-2) 高等学校博士学科点专项科研基金资助课题(20121420110006) 山西省回国留学人员科研资助项目(2013-083) 山西省高等学校优秀创新团队支持计划资助
关键词 图像分割 加权FCM 快速FCM 自适应中值滤波 image segmentation weighted FCM fast FCM adaptive median filtering
  • 相关文献

参考文献10

  • 1章毓晋.图像分割[M].北京:科学出版社,2001.. 被引量:577
  • 2Pal N,Pal S. A Review on Image Segmentation Techniques [ J] . Pattern Recognition, 1993 ,26(9) : 1277 - 1294. 被引量:1
  • 3Yang Y, Zheng C X,Lin P. Fuzzy clustering with spatial constraints for image thresholding [J]. Optica Applicata, 2005 , 35(4) : 309 -315. 被引量:1
  • 4Pal N R, Pal K,Bezdek J C. A mixed c - means clustering model [ R]. In: Proceedings of the IEEE Int. Conf. On FuzzySystems, Spain, 1997,pp. 11 -21. 被引量:1
  • 5Jiang S Z,Yiu W L. Improved Possibilistic c - means clustering Alorithms[ J]. IEEE Transactions on Fuzzy Systems,2004,12(2):209-217. 被引量:1
  • 6丁震,胡钟山,杨静宇,唐振民,邬永革.一种基于模糊聚类的图象分割方法[J].计算机研究与发展,1997,34(7):536-541. 被引量:28
  • 7薛耿剑,王毅,赵海涛,魏梦琦,郝重阳.一种改进的模糊核聚类算法[J].中国医学影像技术,2005,21(10):1609-1611. 被引量:12
  • 8Ji Z X, Sun Q S,Xia D S. A framework with modified fast FCM for brain MR images segmentation [ J]. Pattern Recognition,2011,44: 999-1013. 被引量:1
  • 9胡广书编著..数字信号处理 理论、算法与实现[M].北京:清华大学出版社,1997:490.
  • 10Xie X L,Beni G. A validity measure for fuzzy clustering [ J]. IEEE Tram. PAMI, 1991,13(8) : 841 - 847. 被引量:1

二级参考文献9

  • 1Fu K S,Pattern Recognit,1981年,14卷,1期,3页 被引量:1
  • 2Yu J, Huang HK. A new weighting fuzzy C-means algorithm[C].The 12th IEEE International Conference on Fuzzy Systems, 2003,2: 896-901. 被引量:1
  • 3Dave RN. Generalized fuzzy C-shell clustering and detection of circular and elliptical boundaries [J]. Pattern Recognition, 1992, 25(7) :639-641. 被引量:1
  • 4Krishnapuram R, Frigui H, Nasraui O. The fuzzy C quadrie shell clustering algorithm and the detection of second-degree[J]. Pattern Recognition Letters, 1993,14(7): 545-552. 被引量:1
  • 5Girolami M. Mercer kernel based clustering in feature space[J].IEEE Trans on Neural Networks, 2002,13 (3): 780-784. 被引量:1
  • 6Burges CJC. Geometry and invariance in kernel based methods [A]. Advance in Kernel Method-Support Vector Learning [M].Cambridge: MIT Press, 1999.89-116. 被引量:1
  • 7Scholkopf B, Mika S, Burges C, et al. Input space versus feature space in kernel-based methods [J]. IEEE Trans on Neural Networks, 1999,10(5): 1000-1017. 被引量:1
  • 8Chen S, Zhang D. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure [J]. IEEE Transactions on Systems, Man and Cybernetics-Part B, 2004,34(4): 1907-1916. 被引量:1
  • 9张莉,周伟达,焦李成.核聚类算法[J].计算机学报,2002,25(6):587-590. 被引量:195

共引文献611

同被引文献9

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部