期刊文献+

基于改进的遗传算法的模糊聚类算法 被引量:16

Fuzzy clustering algorithm based on the improved genetic algorithm
下载PDF
导出
摘要 针对传统的模糊C均值聚类(fuzzy C-means clustering)算法容易陷入局部最优解,并且对初始值敏感的缺陷,提出一种基于改进的遗传算法的模糊聚类算法。该算法针对遗传算法的早熟问题提出一种改进的遗传算法,并将其应用于FCM算法,来寻找全局最优的聚类中心。实验表明,该算法与基于传统遗传算法的FCM算法相比,具有更强的寻优能力,更优的聚类效果。 The traditional fuzzy C-means( FCM) clustering algorithm is prone to fall into the solution of local optimum and is sensitive to initial value. Aiming at these drawbacks,a fuzzy C-means based on the improved genetic algorithm is presented. The improved genetic algorithm is employed to optimise the FCM algorithm,finding the cluster center of the global optimum. Finally,the experimental results show that compared with the traditional FCM,the proposed algorithm has stronger optimisation ability and better clustering effect
出处 《智能系统学报》 CSCD 北大核心 2015年第4期627-635,共9页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金资助项目(61172144) 国家科技支撑计划资助项目(2013BAH12F02) 辽宁省教育厅科学研究一般资助项目(L201432)
关键词 模糊C均值算法 聚类分析 遗传算法 动态分析 模糊聚类 初始值 避免早熟 全局最优 局部最优 fuzzy C-means clustering cluster analysis genetic algorithm dynamic analysis fuzzy clustering initial values premature contraction avoidance global optimum local optimum
  • 相关文献

参考文献20

  • 1Tan Pangning,Steinbach M,Kumar V.数据挖掘导论[M].范明,范宏建,译.北京:人民邮电出版社,2006:241-327 被引量:26
  • 2GAO Yunguang, WANG Shicheng, LIU Shunbo. Automatic clustering based on GA-FCM for pattena recognition [ C ]// Computational Intelligence and Design. Changsha, China, 2009: 146-149. 被引量:1
  • 3VIJAYACHITRA S, TAMILARASI A, KASTHURI N. Mul- tiple input single output (MISO) process optimization using [ C ]//International Conference on Education Technology and Computer. Singapore, 2009: 248-252. 被引量:1
  • 4LIU Suhua, HOU Huifang. A combination of mixture genetic algorithm and fuzzy c-means clustering[ C]//IEEE Interna- tional Symposium on IT in Medicine & Education. Ji'nan, China, 2009: 254-258. 被引量:1
  • 5BELAHBIB F Z B, SOUAMI F. Genetic algorithm clustering for color image quantization [ C ]//2011 3rd European Work- shop on Visual Information Processing. Paris, French, 2011 : 83-87. 被引量:1
  • 6BEZDEK J C, EHRLICH R, FULL W. FCM: the fuzzy c- means clustering algorithm [ J ]. Computers and Geosci-ences, 1984, 10(2/3): 191-203. 被引量:1
  • 7LIU Zhide, CHEN Jiabin, SONG Chunlei. A new RBF neu- ral network with GA-based fuzzy c-means clustering [ C ]// Chinese Control and Decision Conference. Guilin, China, 2009 : 208-211. 被引量:1
  • 8HOLLAND J H. Adaptation in Natural and Artificial Sys- tems: An Introductory Analysis with Applications to Biolo- gy, Control, and Artificial Intelligence [ M ]. Cambridge: MIT Press, 1992: 95-110. 被引量:1
  • 9WANG Jianxin. Reducing the overlap among hierarchical clusters with a GA-based approach [ C ]//2009 1 st Interna- tional Conference on Information Science and Engineering. Nanjing, China, 2009: 924-927. 被引量:1
  • 10MENENDEZ H D, BARRERO D F, CAMACHO D. A multi-objective genetic graph-based clustering algorithm with memory optimization [ C~//2013 IEEE Congress on Evolutionary Computation. Cancun, Mexico, 2013 : 3174- 3181. 被引量:1

共引文献25

同被引文献118

引证文献16

二级引证文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部