摘要
为计算出探空湿度传感器随气球上升过程中在空间的飞行姿态和测量周期,应用了一种计算流体动力学方法。首先,建立五种传感器间距模型,获得最优的传感器间距。其次,建立四种飞行姿态,通过观察传感器的壁面剪切应力大小,确定最优的飞行姿态角。最后,利用瞬态分析,仿真出0~32 km高空的加热时间和冷却时间,从而确定测量周期。仿真结果表明:在入口风速8 m/s,次流入口为10 m/s时,最优的间距为3.5~6 mm。传感器的俯仰角为45°时,壁面剪切应力较大,故较为理想的俯仰角为43°~48°。传感器的测量周期采用0.53 W的加热功率和温度降幅为超环境温度12℃所对应的时间。
In order to calculate flight attitude in space and measurement period of sounding humidity sensor rising with balloon, an approach based on computational fluid dynamics is proposed. Firstly, five kinds of sensor interval models are established, to obtain the optimal sensor interval. Secondly, four kinds of flight attitudes are set, to gain the optimal flight attitude angle by observing the wall shear stress of sensors. Finally, simulate heating and cooling time of high attitude from 0 to 32 km by using transient analysis, thereby determine measurement period. Simulation results show that the optimum interval is 3.5 -6 mm when inlet velocity is 8 m/s and second inlet velocity is 10 m/ s. When the sensor pitching angle is 45 °,wall shear stress is much larger, as a result, ideal pitching angle is 43 ° ~ 48°. Measurement period of the sensor is the time when heating power is 0.53 W and the sensor temperature exceed environment temperature by 12 ℃.
出处
《传感器与微系统》
CSCD
2015年第1期28-31,共4页
Transducer and Microsystem Technologies
基金
江苏省农业科技自主创新基金资助项目CX(12)3050
公益性行业(气象)科研专项资助项目(GYHY201106040)
江苏省普通高校研究生科研创新计划资助项目(CXLX13-498)
江苏省六大人才高峰项目(WLW-021)
关键词
探空仪
双加热湿度传感器
CFD仿真
高空湿度
飞行姿态
radiosonde
heated twin humidity sensor
CFD simulation
humidity in high altitude
flight attitude