期刊文献+

LPCEP:基于HTF存储策略和实例映射表的长过程复杂事件处理模型 被引量:1

LPCEP: HTF Storage Strategy and Instance Mapping Table Based Complex Event Processing Model for Long Process
下载PDF
导出
摘要 随着RFID和传感器等数据采集设备的广泛使用及物联网的发展,产生了大量的事件类型的数据,原始的事件数据必须经过复杂事件处理(Complex Event Processing,CEP),才能变成具有丰富语意并对用户有价值的信息,复杂事件处理作为物联网智能处理层的重要组成部分,越来越受到重视.在实际应用中,许多事件流具有长过程的特点,要求相应的复杂事件处理需设置大时间窗口,相对于有限的内存,复杂事件处理面临新的挑战.现有的复杂事件处理均局限于内存进行,均未涉及外存的事件存储和检测.因此,现有的模型和系统均不能用于长过程复杂事件处理.为此,本文提出基于时间片划分的HTF(Hash structure by object ID in memory and Timeslice File in disk)事件实例存储策略和基于实例映射表的大时间窗口复杂事件检测方法,形成了面向长过程的复杂事件处理模型LPCEP(Complex Event Processing for Long Process).相关实验验证了模型用于长过程复杂事件处理的有效性和高效性. With the wide use of sensors and RFID devices and the development of the Internet of things ,large quantifies of event data are generated. Original event data must be processed by CEP in order to become valuable information with rich semantics. CEP has be- come research hotspot as an important part of the intelligent processing layer of the Intemet of things. In practical applications, large numbers of event streams have the characteristics of long process, which demands the corresponding CEP to set large time windows and makes CEP face new challenges in the limited main memory. In all the current CEP methods ,complex events are processed in the main memory without events stored and detected in the auxiliary storage. So,the current methods can not be applied in CEP for long process. Therefore, the paper proposes time slice based event instance storage strategy and instance mapping table based complex event detection method for large time windows, forming the CEP model for long process. The correlative experiments verify the effectiveness and efficiency of the model.
出处 《小型微型计算机系统》 CSCD 北大核心 2015年第1期71-76,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61272177)资助
关键词 长过程复杂事件处理 HTF事件存储策略 实例映射表 候选实例转换 事件实例匹配 complex event processing for long process HTF event storage strategy instance mapping table candidate instance trans- formation event instance matching
  • 相关文献

参考文献18

  • 1Yao-zong Liu,Hong Zhang,Yong-li Wang.RFID Complex Event Processing: Applications in Real-Time Locating System[J].International Journal of Intelligence Science,2012,2(4):160-165. 被引量:2
  • 2Huang Yi, Zheng Li,Xiang Qing. RFID integrated real-time manu-facturing monitoring based on complex event processing [ J ]. Jour-nal of Tsinghua University(SciiKTech),2013,53(5) :721-728. 被引量:1
  • 3Roth M, Donath S. Applying complex event processing towards mo-nitoring of multi - party contracts and services for logistics - a discus -sion [C]. Business Process Management Workshops. Springer Ber-lin Heidelberg,2012:458463. 被引量:1
  • 4Gianpaolo C, Alessandro M. Complex event processing with T-REX[J]. Journal of Systems and Software,2012,85(8) : 1709-1728. 被引量:1
  • 5Wu E, Diao Y, Rizvi S. High-performance complex event process-ing over streams [ C]. ACM SIGMOD Conference on Managementof Data,2006:407-418. 被引量:1
  • 6Gyllstrom D,Wu E’Chae H,et al. SASE:complex event processingover streams [ C]. 3rd Biennial Conference on Innovative Data Sys-tems Research (CIDRW) ,2007:407411. 被引量:1
  • 7Demers A,Gehrke J,Panda B,et al. White W. Cayuga:a generalpurpose event monitoring system [ C]. 3rd Biennial Conference onInnovative Data Systems Research (CIDRW) ,2007 :412-422. 被引量:1
  • 8Mei Y,Madden S. ZStream:a cost-based query processor for adap-tively detecting composite events [ C ]. ACM SIGMOD Conferenceon Management of Data,2009 : 1 -14. 被引量:1
  • 9Gruber R E, Krishnamurthy B, Panagos E. The architecture of theREADY event notification service [C] ? Proc. of the 19th IEEE In-ternational Conference on Distributed Computing Systems Middle-ware Workshop, 1999 : 108-113. 被引量:1
  • 10Chakravarthy S,Mishra D. Snoop:an expressive event specificationlanguage for active databases[ J]. Data Knowledge Engineering,1994,14(1) :l-26. 被引量:1

二级参考文献64

  • 1谷峪,于戈,张天成.RFID复杂事件处理技术[J].计算机科学与探索,2007,1(3):255-267. 被引量:54
  • 2Mark Palmer. Seven principles of effective RFID data management. 2004, http://www.progress.com/realtime/docs/articles/7principles-rfid_mgmnt .pdf. 被引量:1
  • 3Caxey D, Cetintemel U, Cherniack M et aI. Monitoring streams - A new class of data management applications. In Proe. the 28th Int. Conf. Very Large Data Bases (VLDB 2002), Hong Kong, China, August 20-23, 2002, pp.215- 226. 被引量:1
  • 4Jianjun C, Dewitt D J, Feng T et al. NiagaraCQ: A scalable continuous query system for Internet databases. In Proc. Int. Conf. Management of Data (SIGMOD PO00), Dallas, Texas, USA, May 16-18, 2000, pp.379-390. 被引量:1
  • 5Chandrasekaran S, Cooper O, Deshpande A et al. TelegraphCQ: Continuous dataflow processing for an uncertain world. In Proc. the First Biennial Conference on Innovative Data Systems Research (CIDR 2003), Asilomar, CA, USA, January 5-8, 2003, pp.269-280. 被引量:1
  • 6Chakravarthy S, Krishnaprasad V, Anwar E, Kim S. Composite events for active databases: Semantics. contexts and detection. In Proc. the 20th Int. Conf. Very Large Data Bases (VLDB'94), Santiago de Chile, Chile, September 12- 15, 1994, pp.606-617. 被引量:1
  • 7Gatsiu S, Dittrich K R. Events in an active object-oriented database system. In Proc. the 1st International Workshop on Rules in Database Systems (RIDS), Edinburgh, Scotland, August 30-September 1, 1993, pp.23-39. 被引量:1
  • 8Gehani N H, Jagadish H V, Shemueli O. Composite event specification in active databases: Model and implementation. In Proc. the 18th Int. Conf. Very Large Databases (VLDB'92), Vancouver, Canada, August 23-27, 1992, pp.327- 338. 被引量:1
  • 9Meo R, Psaila G, Ceri S. Composite events in chimera. In Proc. the 5th Int. Conf. Extending Database Technology (EDBT'96), Avignon, France, March 25-29, 1996, pp.56-76. 被引量:1
  • 10W, Yanlei D, Shariq R. High-performance complex event processing over streams. In Proe. the International Conference on Management of Data (SIGMOD 2006), Chicago, Illinois, USA, June 27-29, 2006, pp.407-418. 被引量:1

共引文献17

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部