期刊文献+

云数据库中基于极大熵差分进化的负载评估算法 被引量:3

Load evaluation algorithm of cloud database based on maximum entropy differential evolution
下载PDF
导出
摘要 由于分布式关系型数据库基于两阶段提交协议的设计方式,使得系统如出现单节点瓶颈问题,数据库事务将全部回滚,从而造成巨大的系统开销,影响数据库在大数据环境下的应用。针对这一现状,提出一种基于极大熵差分进化的负载评估算法,利用评价函数法,将多目标优化问题转化为不可微的单目标优化问题,再利用极大熵函数,将不可微优化问题转化为一个带有参数的无约束优化问题,最后用差分进化算法对其进行求解,找出节点资源最优集,从而为过载节点的数据迁移提供了理论依据,也进一步实现了对云数据库的设计。实验结果表明,该算法能够提高系统的整体性能,有效避免单节点瓶颈问题。 Due to the 2PC( Two-Phase Commit) protocol, all transactions of DDBS( Distributed Data Base System) will roll back if one of distributed nodes was overloaded, which makes the DDBS difficultly adapt to the big data's environment,whose data are dynamic and random. In order to solve this multi-objective optimization problem, an evaluation method based on maximum entropy diffrential evulution was proposed to evaluate system's load. First, the problem was reformulated as a non-smooth single objective optimization problem via evaluation function, and a smooth single objective optimization problem with parameter via the maximum entropy function, and then using the differential evolution algorithm to solve the converted problem. Experimental results show that the load evolution algorithm based on maximum entropy function method can evaluate the load in big data's environment, avoid single-node bottlenecks, and improve system's performance.
出处 《计算机应用》 CSCD 北大核心 2014年第A02期123-125,142,共4页 journal of Computer Applications
关键词 两阶段提交协议 大数据 云数据库 极大熵 差分进化 Two-Phase Commit(2PC) protocol big data cloud database maximum entropy differential evolution
  • 相关文献

参考文献17

  • 1CAMPBELL D G, KAKIVAYA G, ELLIS N. Extreme scale with full SQL language support in Microsoft SQL Azure [ C ]// SIGMOD'10: Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data. New York: ACM Press, 2010: 1021 - 1023. 被引量:1
  • 2BERNSTEIN P A, CSERI I, DANI N, et al. Adapting microsoft SQL server for cloud computing[ C]//ICDE'll: Proceedings of the 2011 IEEE 27th International Conference on Data Engineering. Washington, DC: IEEE Computer Society, 2011:1255 -1263. 被引量:1
  • 3DAS S, AGARWAL S, AGRAWAL D, et al. ElasTraS: an elastic, scalable, and self managing transactional database for the cloud[ J]. ACM Transactions on Database Systems, 2013, 38(1): Article No. 5. 被引量:1
  • 4DAS S, AGRAWAL D, ABBADI A E. ElasTraS: An elastic trans- actional data store in the cloud[ C]// HotCloud'09: Proceedings of the 2009 Conference on Hot Topics in Cloud Computing. Berkeley: USENIX Association, 2009:131 - 142. 被引量:1
  • 5AGUILERA M K, MERCHANT A, SHAH M, et al. Sinfonia: A new paradigm for building scalable distributed systems [ C ]// SOSP'07: Proceedings of Twenty-First ACM SIGOPS Symposium on Operating Systems Principles. New York: ACM Press, 2007:159 - 174. 被引量:1
  • 6LEVANDOSKI J J, LOMET D, MOKBEL M F, et al. Deuterono- my: transaction support for cloud data [ C]// Proceedings of the CIDR'll. New York: ACM Press, 2011:123 - 133. 被引量:1
  • 7WEI Z, PIERRE G, CHIC H. CloudTPS: scalable transactions for Web applications in the cloud, IR-CS-053. [ R]. Amsterdam: Vfije Universiteit, 2010. 被引量:1
  • 8THOMSON A, DIAMOND T, WENG S C. Calvin: fast distributed transactions for partitioned database systems [ C ]// Proceedings of the SIGMOD 2012. New York: ACM Press, 2012:1 - 12. 被引量:1
  • 9崔逊学著..多目标进化算法及其应用[M].北京:国防工业出版社,2006:331.
  • 10陈昌明.求解多目标最优化问题的一类极大熵评价函数法[J].厦门大学学报(自然科学版),1997,36(5):663-665. 被引量:3

二级参考文献13

共引文献4

同被引文献38

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部