期刊文献+

基于变异系数的分片常值图像快速分割 被引量:3

FAST SEGMENTATION OF IMAGES WITH CONSTANT PIECEWISE INTENSITIES BASED ON COEFFICIENT OF VARIATION
下载PDF
导出
摘要 结合C-V模型和变异系数,提出一种水平集演化方程为常微分方程类型的模型。该模型不仅能正确分割分片常值图像,而且迭代次数不受初始轮廓大小、位置和形状的影响,且水平集函数无需重新初始化,从而能够快速分割分片常值图像,同时又能分割C-V模型、ICV模型和PSM模型不能正确分割的3-phases图像。 In this paper we propose a model to construct the level set evolution equation as an ODE( ordinary differential equation) in combination with C-V model and coefficient of variation.The model can correctly segment the image with constant piecewise intensity,and the iteration times will not be affected by the size,position and shape of the initial contour.Furthermore,the level set function does not need to be reinitialised,so that it can fast segment the image with constant piecewise intensity,and can segment those 3-phases images such as C-V model,ICV model and PSM model which are difficult to be segmented correctly at the same time.
出处 《计算机应用与软件》 CSCD 北大核心 2014年第11期197-200,共4页 Computer Applications and Software
基金 重庆市自然科学基金计划项目(CSTC 2010BB9218)
关键词 变异系数 C-V模型 水平集函数 主动轮廓 PSM模型 Coefficient of variation C-V model Level set function Active contour PSM model
  • 相关文献

参考文献12

  • 1Chan T F,Vese L A. Active contours without edges [J]. IEEE Transac- tions on Image Prcrcessing,2001,10 ( 2 ) :266 - 277. 被引量:1
  • 2Vese L, Chart T. A multiphase level set framework for image segmenta- tion using the Mumford and Shah model [ J ]. Int J Compute Vision, 2002,50:271 - 293. 被引量:1
  • 3Li C, Kao C, Gore C, et al. Implicit active contours driven by local bina- ry fitting energy[ C ]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition ,2007,6:17- 22. 被引量:1
  • 4Li C, Kao C,Gore J C,et al. Minimization of region-scalable fitting en- ergy for image segmentation [ J]. IEEE Transactions on Image Prreess- ing,2008,17(10) : 1940 - 1949. 被引量:1
  • 5Wang L,Li C,Sun Q,et al. Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation [ J ]. Computerized Medical imaging and Graphics, 2009, 33:520 -53l. 被引量:1
  • 6何瑞英,何传江.扩展无边活动轮廓模型[J].计算机工程与应用,2009,45(24):156-158. 被引量:4
  • 7张开华,周文罡,张振,郑孝娟.一种改进的C-V主动轮廓模型[J].光电工程,2008,35(12):112-116. 被引量:29
  • 8Ghulam Murtaza, Haider Ali, Noor Badshah. A Robust Local Model for Segmentation Based on Coefficient of Variation [ J ] . Journal of Informa- tion & Communication Technology. 2012,5 (1) :30- 39. 被引量:1
  • 9Zhang K,Zhang L,Song H,et al. Active contours with selective local or global segmentation:a new formulation and level set method [ J ]. Image and Vision Computing,2010,28(4) :668-676. 被引量:1
  • 10李俊,杨新,施鹏飞.基于Mumford-Shah模型的快速水平集图像分割方法[J].计算机学报,2002,25(11):1175-1183. 被引量:124

二级参考文献31

  • 1闵莉,李小毛,唐延东.一种改进的无需水平集重新初始化的C-V主动轮廓模型(英文)[J].光电工程,2006,33(9):52-58. 被引量:12
  • 2龚永义,罗笑南,黄辉,廖国钧,张余.基于单水平集的多目标轮廓提取[J].计算机学报,2007,30(1):120-128. 被引量:22
  • 3何传江,唐利明.几何活动轮廓模型中停止速度场的异性扩散[J].软件学报,2007,18(3):600-607. 被引量:23
  • 4李俊.基于曲线演化的图像分割方法及应用:博士学位认文[M].上海:上海交通大学,2001.. 被引量:1
  • 5Chan T, Vese L. Active contours without edges [J]. IEEE Transaction on Image Processing, 2001, 10(2): 266-277. 被引量:1
  • 6WANG Wen-yu. An Active Contour Model For Selective Segmentation [C]// International Conference on Computer Graphics, Imaging and Vision: New Trends. Washington, DC, USA: IEEE Press, 2005: 259-260. 被引量:1
  • 7Li C, Xu C, Gui C, et al. Level set evolution without re-initialization: a new variational formulation [C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, CA, USA: IEEE Press, 2005, 1: 430-436. 被引量:1
  • 8Li Chnnming, Kao Chiu-Yen, Gore J C, et al. Implicit Active Contours Driven by Local Binary Fitting Energy [C]//IEEE Conferenee on Computer Vision and Pattern Recognition (CVPR), Minnesota, USA: IEEE Press, 2007: 1-7. 被引量:1
  • 9WANG Yuping, DANG Chuangyin. An Evolutionary Algorithm for Global Optimization Based on Level-Set Evolution and Latin- Squares [J]. IEEE Transactions on Evolutionary Computation, 2007, 11(5): 579-595. 被引量:1
  • 10Caselles V, Kimmel R, Sapiro G. Geodesic active contours [J]. Int'l J. Comp. Vis, 1997, 22: 61-79. 被引量:1

共引文献153

同被引文献17

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部