期刊文献+

结合局部熵的无需重新初始化水平集演化 被引量:2

Local entropy based level set evolution without re-initialization
下载PDF
导出
摘要 无需重新初始化模型是一个著名的变分水平集模型,在演化过程中无需周期性地重新初始化水平集函数。然而,由于其边缘停止函数是基于梯度的,因此仍然存在一些缺点:对噪声较敏感,弱边缘处易出现边缘泄漏,不能提取不连续边缘等。采用局部熵和灰度变换构造该模型的边缘停止函数。实验结果表明,使用新的边缘停止函数,能够克服上述不足。 Level Set Evolution Without Re-initialization(LSEWR) is a well known variational level set model.It completely eliminates the re-initialization procedure of level set function.However,because its edge stopping function is built based on image gradient,it has still several disadvantages.It is highly sensitive to noise,and is prone to edge leakage when applied to images with weak edges.Finally,it is not available for images with discontinuous edges.A new edge stopping function is constructed based on local entropy and gray-scale transformation.Experiments show that the LSEWR model with the new edge stopping function can do a good work for overcoming the above-mentioned drawbacks.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第34期174-177,共4页 Computer Engineering and Applications
基金 重庆大学"211工程"三期创新人才培养计划建设项目(No.S-09110) 重庆大学中央高校基本科研业务费科研专项研究生科技创新基金(No.CDJXS10100024) 重庆市科委自然科学基金计划资助项目(No.CSTC 2010BB9218)
关键词 图像分割 水平集方法 活动轮廓模型 边缘停止函数 局部熵 灰度变换 image segmentation level set method active contour model edge stopping function local entropy gray-scaletransformation
  • 相关文献

参考文献6

  • 1Li C,Xu C,Gui C,et al.Level set evolution without re-initialization:a new variational formulation[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005 : 430-436. 被引量:1
  • 2何传江,李梦,詹毅.用于图像分割的自适应距离保持水平集演化[J].软件学报,2008,19(12):3161-3169. 被引量:57
  • 3Li C, Kao C, Gore J, et al.Minimization of region-scalable fitting energy for image segmentation[J].IEEE Transactions on Image Processing,2008,17(10) : 1940-1949. 被引量:1
  • 4Wang L, Li C, Xia D, et al.Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation[J].Computerized Medical imaging and Graphics,2009,7:520-531. 被引量:1
  • 5Yang C, Zheng S, Ye J.Level set contour extraction method based on support value filter[J].Applied Mathematics and Com- putation, 2008,205 : 688-696. 被引量:1
  • 6冯玉玲,何传江,李梦.不用高斯平滑的边缘活动轮廓模型[J].计算机工程与应用,2010,46(36):192-194. 被引量:10

二级参考文献10

共引文献64

同被引文献20

  • 1张雄 刘岩.无网格方法[M].北京:清华大学出版社,2004.14-19. 被引量:10
  • 2Tsai R, Osher S.Level set methods and their applications in image science[J].Comm Math Sci,2003,1:623-656. 被引量:1
  • 3Chan T, Vese L.Active contours without edges[J].IEEE T Image Process, 2001,10:266-277. 被引量:1
  • 4Zhang K H, Zhang L, Song H H, et al.Re-initialization free level set evolution via reaction diffusion[J].IEEE T Image Process, 2013,22 : 258-271. 被引量:1
  • 5Li X L,Zhu J L,Zhang S G.A hybrid radial boundary node method based on radial basis point interpolation[J]. Eng Anal Bound Elem,2009,33: 1273-1283. 被引量:1
  • 6Li X L,Zhu J L.The method of fundamental solutions for nonlinear elliptic problems[J].Eng Anal Bound Elem, 2009,33 : 322-329. 被引量:1
  • 7Wang S Y, Wang M Y.Radial basis functions and level set method for structural topology optimization[J].Int J Numer Meth Eng, 2006,65 : 2060-2090. 被引量:1
  • 8Xie X H, Mirmehdi M.Radial basis function based level set interpolation and evolution for deformable model- ling[J].Image Vision Comput, 2011,29 : 167-177. 被引量:1
  • 9Gelas A, Bemard O, Friboulet D, et al.Compactly sup- ported radial basis functions based collocation method for level-set evolution[J].IEEE T Image Process,2007, 16: 1873-1887. 被引量:1
  • 10Shattuck D W, Sandor-Leahy S R.Magnetic resonance image tissue classification using a partial volume model[J]. Neuroimage, 2001,13 : 856-876. 被引量:1

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部