期刊文献+

基于Kalman预测的空中加油锥套跟踪方法 被引量:2

Tracking of Aerial Refueling Drogue Based on Kalman Prediction
下载PDF
导出
摘要 利用加油锥套的位置和尺寸信息建立Kalman滤波方程,结合加油对接过程中锥套的运动特点设置模型参数,并引入目标遮挡系数实现参数的自适应调整,对锥套的运动进行状态估计,再通过改进的霍夫梯度法采集观测值对估计值进行修正。实验结果表明,本文研究的算法在工作范围内能够实现对锥套的稳定跟踪,特别是当锥套发生部分遮挡时具有较好的持续跟踪能力,对背景变化具有较好的适应性。 The information of drogue containing position and size are used to establish Kalman filter equations.The model parameters are set considering drogue′s motion features in refueling process and the object occlusion coefficient is introduced to complete the parameters′adaptive adjustment.The next-time states of moving drogue are estimated by the model and the estimation is corrected by observation.The experimental results show that the algorithm can track the drogue stably in work distances.When non-target moving objects appear in the images or the drogue is obscured,the algorithm still has the ability of continuous tracking.
出处 《数据采集与处理》 CSCD 北大核心 2014年第6期1041-1045,共5页 Journal of Data Acquisition and Processing
关键词 KALMAN预测 运动锥套跟踪 自适应调整 状态估计 软式空中加油 Kalman prediction moving drogue tracking adaptive adjustment state estimation soft aerial refueling
  • 相关文献

参考文献11

二级参考文献41

  • 1黎自强,滕弘飞.广义Hough变换:多个圆的快速随机检测[J].计算机辅助设计与图形学学报,2006,18(1):27-33. 被引量:40
  • 2Puranik S P, Tugnait J K. Tracking of multiple maneuvering targets using multisean JPDA and IMM filtering [J]. IEEE Trans on Aerospace and Electronic Systems, 2007, 43(1) : 23-35. 被引量:1
  • 3Seokwon Yeom. Efficient multi-target tracking with sub-event IMM-JPDA and one-point prime initialization[C]//IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems. Seoul, Korea: IEEE,2008:451-456. 被引量:1
  • 4Farrell III, William J. Interacting multiple model filter for tactical ballistic missile tracking[J]. IEEE Trans on Aerospace and Electronic Systems, 2008, 44(2) : 418-426. 被引量:1
  • 5Ryu J H, Han D H, Lee K K, et al. Predictionbased interacting multiple model estimation algorithm for target tracking with large sampling periods [J]. International Journal of Control, Automation and Systems, 2008, 6(1): 44-53. 被引量:1
  • 6Kirubarajan T, Bar-Shalom Y. Kalman filter versus IMM estimator: When do we need the latter[J]. IEEE Trans on Aerospace and Electronic Systems, 2003, 39(4): 1452-1457. 被引量:1
  • 7Boers Y, Driessen J N. Interacting multiple model particle filter[J]. IEE Proc--Radar Sonar Navig, 2003, 150(5): 344-349. 被引量:1
  • 8Yang N, Tian W, Jin Z. An interacting multiple model particle filter for maneuvering target location [J]. Measurement Science and Technology, 2006, 17 (6): 1307-1311. 被引量:1
  • 9Angelova A, Mihaylova M. Extended object track ing using Monte Carlo methods[J]. IEEE Trans on Signal Processing, 2008, 56(2): 825-832. 被引量:1
  • 10Kirubarajan T, Bar-Shalom Y, Blair W D. IMMPDAF for radar management and tracking Benchmark with ECN[J]. IEEE Trans on Aerospace and Electronic Systems, 1998(4) : 1115-1133. 被引量:1

共引文献27

同被引文献10

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部