期刊文献+

截断核函数在图像分类中的应用

Application of Truncated Kernel Function in Image Classification
下载PDF
导出
摘要 多类别图像分类是计算机视觉领域的一个基本问题,现有分类方法大多是根据一对多的原则构建一个多类别分类器,在构建分类器时忽视了类与类之间的本质关联,难以较好地利用样本特征。为此,提出一种基于截断核函数的分类器构建方法。利用截断核函数捕捉图像类别之间的关联,同时避免传统核函数在逼近矩阵秩时的偏差问题,并针对建立的截断核函数优化模型,设计一种有效的交叉迭代算法。实验结果表明,该截断核函数方法能够提高图像分类的精确度。 Multi-class image classification is a fundamental problem in computer vision research area. The existing approaches solving this problem mainly focus on how to construct a one-vs-rest multi-class classifier. The important intrinsic connections among different classes are completely ignored by such a strategy, and consequently the image features cannot be utilized sufficiently. To solve this issue,this paper proposes a classifiers construction method based on truncated nuclear norm. In principle and practice,such truncated nuclear norm is able to capture the intrinsic connections among different classes, and meanwhile overcome the drawback of traditional nuclear norm for matrix rank approximation. Experimental results show that the proposed method can remarkably improve the image classification performance on the benchmark datasets.
作者 徐鸿雁
出处 《计算机工程》 CAS CSCD 2014年第12期220-224,共5页 Computer Engineering
关键词 图像分类 截断核函数 凸优化 类关联 矩阵秩 支持向量机 image classification truncated kernel function convex optimization class correlation matrix rank Support Vector Machine(SVM)
  • 相关文献

参考文献14

  • 1Joshi J A,Fatih P,Nikolaos P.Multi-class Active Learning for Image Classification[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Miami,USA:[s.n.],2009:2372-2379. 被引量:1
  • 2Lazebnik S,Cordelia S,Jean P.Beyond Bags of Features:Spatial Pyramid Matching for Recognizing Natural Scene Categories[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Portland,USA:[s.n.],2006:2169-2178. 被引量:1
  • 3Liu Qingshan Lu Hanqing Ma Songde (Nat. Lab of Pattern Recognition, Inst. of Automation, Chinese Academy of Sciences, Beijing 100080).A NON-PARAMETER BAYESIAN CLASSIFIER FOR FACE RECOGNITION[J].Journal of Electronics(China),2003,20(5):362-370. 被引量:9
  • 4付岩,王耀威,王伟强,高文.SVM用于基于内容的自然图像分类和检索[J].计算机学报,2003,26(10):1261-1265. 被引量:54
  • 5惠文华.基于支持向量机的遥感图像分类方法[J].地球科学与环境学报,2006,28(2):93-95. 被引量:46
  • 6Fan Rongen,Chang Kaiwei,Hsieh C J,et al.LIBLINEAR:A Library for Large Linear Classification[J].Journal of Machine Learning Research,2008,9(6):1871-1874. 被引量:1
  • 7王华忠,俞金寿.核函数方法及其模型选择[J].江南大学学报(自然科学版),2006,5(4):500-504. 被引量:40
  • 8吴涛..核函数的性质、方法及其在障碍检测中的应用[D].国防科学技术大学,2003:
  • 9Zhang Debing,Hu Yao,Ye Jieping,et al.Matrix Completion by Truncated Nuclear Norm Regularization[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Providence,USA:[s.n.],2012:2192-2199. 被引量:1
  • 10Michael G,Boyd S.CVX:Matlab Software for Disciplined Convex Programming(Version2.0)[EB/OL].(2012-09-27).http://cvxr.com/cvx. 被引量:1

二级参考文献50

  • 1祁亨年,杨建刚,方陆明.基于多类支持向量机的遥感图像分类及其半监督式改进策略[J].复旦学报(自然科学版),2004,43(5):781-784. 被引量:14
  • 2[2]Li Jiang,Narayanan Ram M.A Shape-based Approach to Change Detection of Lakes Using Time Series Remote Sensing Image[J].IEEE Transactions on Geoscience and Remote Sensing,2003,41(11):2466-2477. 被引量:1
  • 3Burkhardt H, Siggelkow S. Invariant features for discriminating between equivalence classes. In:Nonlinear Model-based Image Video Processing and Analysis. NY: John Wiley and Sons,2000. 被引量:1
  • 4Scholkopf B, Smola A J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond.Cambridge, Mass: MIT Press, 2002. 被引量:1
  • 5Vapnik V N. The Nature of Statistical Learning Theory. NewYork: Springer-Verlag, 2000. 被引量:1
  • 6Scholkopf B, Burges C J C, Smola A J. Advances in Kernel Methods—Support Vector Learning. Cambridge, MA: MIT Press, 1999. 被引量:1
  • 7Smeulders A, Worring M et al. Content-based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(12) : 1349~ 1380. 被引量:1
  • 8Flickner M et al. Query by image and video content: The QBIC system. IEEE Computer, 1995,28(9) : 23 ~32. 被引量:1
  • 9Bach J R, Fuller C, Gupta Aet al. Virage image search engine: an open framework for image management. SPIE Storage and Retrieval of Image and Video DataBases, 1996,4:76 ~87. 被引量:1
  • 10Smith J, Chang S F. VisualSEEK: A fully automated contentbased image query system. In: Proceedings of the 4th ACM Multimedia Conference,Boston MA, USA, 1996.87~98. 被引量:1

共引文献145

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部