期刊文献+

社区发现在复杂网络划分中的应用 被引量:1

Application of Community Discovery in Complex Network Division
下载PDF
导出
摘要 在无标度网络中,社区结构是普遍存在的一种网络结构特性,社区结构是网络中间层的描述,是对网络的自然压缩。文中基于这一事实,将社区结构发现方法加入到多层网络划分框架中,提出了基于社区结构的多层网络划分改进策略。该方法首先对无标度网络进行社区发现;然后以发现的社区结构为单位,对原网络进行压缩;之后对压缩后的网络进行初始划分;最后将划分结果还原为对原网络的划分。在进行初始划分时,为获得较好的划分效果,引入了0-1规划方法,并使用K-L算法进行优化。通过对比实验,结果表明把社区结构引入多层网络划分方法中,可以获得更好的划分。 In the scale-free network,the community structure is ubiquitous structural properties of a network,community structure is the description of network middle layer,which is a natural compression for network Based on this fact,the community structure discovery methods are added into multi-layer network framework,propose an improved multi-layer network division strategy based on community structure. This method first carries out the community discovery for scale-free networks,then with the discovered community structure as a unit,conduct the original network compression,later divide the network compressed initially,finally the result will be reverted to the o-riginal network division. During initial division,in order to get a better division results,introduce the 0-1 programming methods and algo-rithms and optimized by the use of K-L. By comparing the experiment,the results show that introduction of community structures into multi-layer network division method,can get a better division.
出处 《计算机技术与发展》 2014年第11期234-237,241,共5页 Computer Technology and Development
基金 国家"863"高技术发展计划项目(2013AA01A212)
关键词 网络划分 无标度网络 社区结构 多层网络划分 network segmentation scale-free network community structure multi-layer network division
  • 相关文献

参考文献2

二级参考文献12

  • 1陈安龙,唐常杰,陶宏才,元昌安,谢方军.基于极大团和FP-Tree的挖掘关联规则的改进算法[J].软件学报,2004,15(8):1198-1207. 被引量:30
  • 2Berchtold S.The pyramid-technique:Towards breaking the curse of dimensionality.In:Proc.ACM SIGMOD Intl.Conf.on Management of Data.ACM Press.1998.142~153 被引量:1
  • 3Luc A.Exploratory Spatial Data Analysis and Geographic Information Systems.In:M.Painho ed.New Tools for Spatial Analysis,1994.45~54 被引量:1
  • 4Shekhar S,Lu C,Zhang P.Detecting Graph-Based Spatial Outlier:Algorithms and Applications (ASummary of Results).In Proc.of the Seventh ACMSIGKDD Int'l Conference on Knowledge Discovery and Data Mining.Aug 2001 被引量:1
  • 5Shekhar S,Lu C,Zhang P.Detecting Graph-Based Spatial Outlier.Intelligent Data Analysis:An International Journal,2002.451~468 被引量:1
  • 6Panatier Y,Variowin.Software For Spatial Data Analysis in 2D.New York:Springer-Verlag,1996 被引量:1
  • 7Agrawal R.Mining association rules between sets of items in large databases[C]∥Proceedings of the 1993 ACM SIGMOD Conference.Washington,D C:[s.n.],1993:207-216. 被引量:1
  • 8Hatonen K.Knowledge discovery from telecommunication network alarm databases[C]∥ICDE'96.New Orleans:[s.n.],1996:115-122. 被引量:1
  • 9Han Jiawei.Mining frequent patterns without candidate generation[C]∥Proceedings of the 2000 ACM SIGMOD.Dallas:[s.n.],2000:1-12. 被引量:1
  • 10Vilalta Ricardo,Ma Sheng,Hellerstein Joseph.Rule induction of computer events[C]∥Proceedings of the 12th IFIP/IEEE DSOM'2001.Nancy France:[s.n.],2001:225-235. 被引量:1

共引文献18

同被引文献5

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部