期刊文献+

ASUCF:基于平均相似度的协同过滤推荐算法 被引量:4

ASUCF:Collaborative filtering recommendation algorithm based on average similarity
下载PDF
导出
摘要 针对CF推荐技术依赖的评分矩阵在现实中存在的稀疏性问题,提出用户-项目平均相似度协同过滤推荐算法(ASUCF)。对评分矩阵进行充分挖掘、多次利用,引入平均相似度来惩罚用户或项目的评分或被评分的波动;综合考虑用户和项目两方面,提高预测评分的可靠性。实验结果表明,该方法可以有效提高预测的准确性及推荐质量。 In the user-item rating matrix which is relied on by collaborative filtering,there exists the problem of data sparsity.For this problem,a kind of improved model called ASUCF was proposed.The matrix was sufficiently exploited and repeatedly used.The average similarity was used to punish the fluctuations of user’s ratings or item’s score,and the reliability of prediction score from users as well as items was improved.Finally,the experiments prove that the algorithm can effectively improve the accuracy of prediction and recommendation quality.
作者 叶锡君 曹萍
出处 《计算机工程与设计》 CSCD 北大核心 2014年第12期4217-4222,共6页 Computer Engineering and Design
基金 国家自然科学基金项目(31301691) 江苏省高等教育教改研究基金项目(2013JSJG195)
关键词 推荐系统 协同过滤 平均相似度 平均绝对偏差 个性化推荐 recommender system collaborative filtering average similarity MAE personalized recommendation
  • 相关文献

参考文献16

二级参考文献76

共引文献646

同被引文献42

  • 1杨博,赵鹏飞.推荐算法综述[J].山西大学学报(自然科学版),2011,34(3):337-350. 被引量:87
  • 2周涛.个性化推荐的十大挑战[J].中国计算机学会通讯,2012,8(7):48-61. 被引量:6
  • 3Zhou Tao,Kuscsik Z,Liu Jianguo.Solving the Apparent Diversity-accuracy Dilemma of Recommender Systems[J].Proceedings of National Academy of Sciences of the United States of America,2010,107(10):4511-4515. 被引量:1
  • 4Lv Linyuan,Medo M,Yeung Chi-Ho,et al.Recommender System[J].Physics Reports,2012,519(1):1-49. 被引量:1
  • 5Gediminas A,Young O K.Improving Aggregate Recommendation Diversity Using Ranking-based Techniques[J].IEEE Transactions on Knowledge and Data Engineering,2011,24(5):896-911. 被引量:1
  • 6Neal L,Stephen H,Licia C,et al.Temporal Diversity in Recommender Systems[C]//Proceedings of the33rd International ACM SIGIR Conference on Research and Development in Information Retrieval.New York,USA:ACM Press,2010:210-217. 被引量:1
  • 7Grouplens[EB/OL].[2014-04-15].http://grouplens.org/datasets/movielens/. 被引量:1
  • 8Zhang Mi,Hurley N.Avoiding Monotony:Improving the Diversity of Recommendation Lists[C]//Proceedings of ACM Conference on Recommender Systems.New York,USA:ACM Press,2008:123-130. 被引量:1
  • 9Ziegler C N,Lausen G.Making Product Recommendations More Diverse[J].IEEE Data Engineering Bulletin,2009,32(4):23-32. 被引量:1
  • 10Adomavicius Y K.Toward More Diverse Recommenda-tions:Item Re-ranking Methods for Recommender Systems[C]//Proceedings of the 19th Workshop on Information Technologies and Systems.Berlin,Germany:Springer,2009:3-10. 被引量:1

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部