期刊文献+

GaSb添加和Sb掺杂对Mg2Si0.5Sn0.5固溶体热电性能的影响(英文) 被引量:2

Effect of GaSb Addition and Sb Doping on the Thermoelectric Properties of Mg_2Si_(0.5)Sn_(0.5) Solid Solutions
原文传递
导出
摘要 利用B2O3助熔剂法结合热压法制备了Mg2Si0.487-2x Sn0.5(Ga Sb)x Sb0.013(0.04≤x≤0.10)固溶体。X射线衍射结果表明样品呈单相。Sb掺杂有效提高了样品的电导率。随温度升高,Mg2Si0.487-2x Sn0.5(Ga Sb)x Sb0.013(0.04≤x≤0.10)样品的电导率降低而塞贝克系数升高。随Ga Sb含量的增多,样品的电导率呈现出先增大后减小的变化趋势。所有样品中Mg2Si0.287Sn0.5(Ga Sb)0.1Sb0.013具有最低晶格热导率,其室温晶格热导率比Mg2Si0.5Sn0.5[11]低15%。由于电导率较高使Mg2Si0.327Sn0.5(Ga Sb)0.08Sb0.013具有最高热电优值,在720 K达到0.61,显著高于基体Mg2Si0.5Sn0.5[11]的最高热电优值0.019。 Mg2Si0.487-2xSn0.5(GaSb)xSb0.013 (0.04 〈 x 〈 0.10) solid solutions were synthesized by a B203 flux method followed by hot pressing. X-ray power diffraction analysis confirms that single-phased samples are obtained. It is found that the Sb-doping effec- tively enhances the electrical conductivity. The Seebeck coefficients increase while the electrical conductivity decreases for Mg2Si0.487-2XSn0.5(GaSb)xSb0.013 with the increase of temperature. With increasing of GaSb content the electrical conductivity first in- creases and then decreases. Among all the samples, Mg2Si0.287Sn0.5(GaSb)0.1Sb0.013 sample has the lowest lattice thermal conductivity which is about 15% lower than that of Mg2Si0.sSn0.5 [11] at room temperature. A maximum dimensionless figure of merit of 0.61 at 720 K has been obtained for Mg2Si0.327Sn0.5(GaSb)0.08Sb0.013 mainly due to its high electrical conductivity, which is obviously higher than that (0.019 at 540 K) of Mg2Si0.sSn0.5 [11].
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2014年第11期2623-2626,共4页 Rare Metal Materials and Engineering
基金 National Natural Science Foundation of China(50731006,50971115,51061120455)
关键词 硅化镁 热电性能 热电材料 等电子取代 magnesium silicides thermoelectric properties thermoelectric materials isoelectronic substitution
  • 相关文献

参考文献16

  • 1Tritt T M. Science[J], 1996,272: 1276. 被引量:1
  • 2Disalvo F G. Science[J], 1999,285: 703. 被引量:1
  • 3Shen J J, Zhu T J, Zhao X B et al. Energy Environ Sci[J], 2010,3: 1519. 被引量:1
  • 4Heremans J P, Jovovic V, Toberer E S et al. Science[J], 2008, 321: 554. 被引量:1
  • 5Zaitsev V K, Fedorov M I, Gurieva E A et al. Phys Rev B[J], 2006, 74: 045 207. 被引量:1
  • 6Zhang Q, He J, Zhu T J et al. Appl Phys Lett[J], 2008, 93: 102 109. 被引量:1
  • 7Ji X H, He J, Su Z et al. J Appl Phys[J], 2008, 104: 034907. 被引量:1
  • 8Zhang S N, Zhu T J, Yang S H et al. Acta Mater[J], 2010, 58: 4160. 被引量:1
  • 9Brown S R, Kauzlarich S M, Gascoin F et al. Chern Mater[J], 2006, 18: 1873. 被引量:1
  • 10Hsu K F, Loo S, Guo F et al. Science[J], 2004, 303: 818. 被引量:1

同被引文献7

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部